30 [Vol. 42,

8. Some Theorems in B-algebra

By Kiyoshi ISÉKI

(Comm. by Kinjirô Kunugi, M.J.A., Jan. 12, 1966)

In my notes ([1], [2], and [3]), I gave algebraic formulations of classical propositional calculus, and some characterization of Boolean algebra. In this note, I shall give proofs of some results in classical propositional calculus by view of algebraic formulations.

Let $M=\langle X, 0, *, \sim \rangle$ be a B-algebra, i.e., M satisfies the following axioms:

- 1 $x * y \leq x$,
- 2 $(x*z)*(y*z) \leq (x*y)*z$,
- $3 \quad x * y \leqslant (\sim y) * (\sim x),$
- 4 $0 \leq x$
- 5 $x \leq y$ and $y \leq x$ imply x = y,

where $x \leq y$ means x * y = 0.

Theorem 1. In a B-algebra M, we have

$$(x * u) * (x * z) \leq z * (y * x).$$

The formula in theorem 1 is used to give axioms of classical propositional calculus by A. Rose [6]. For proofs, we freely use some results mentioned in my notes [1], [2], and [3]. We refer, for example, the proposition (16) in my note [2] as ((16) in [2]).

Proof.
$$(x * u) * (x * z) = (x * (x * z)) * u$$
 ((1) in [2])
 $\leq (z * (\sim x)) * u$ ((13) in [3])

$$=(z*u)*(\sim x)$$
 ((1) in [2])

$$\leq z*(\sim x).$$
 ((5) in [2])

On the other hand, we have $y * x \le \sim x$ from ((8) in [1]). Hence by ((5) in [2]), we have $z * (\sim x) \le z * (y * x)$. Therefore we have

$$(x * u) * (x * z) \leq z * (y * x).$$

The following is an algebraic formulation of a formula given by C. Meredith (see A. N. Prior [5]).

Theorem 2. In a B-algebra M, we have

$$(x*s)*(x*t) \leq t*(z*(((\sim s)*(\sim z))*(y*x))).$$

Proof. $(x*s)*(x*t)=((\sim s)*(\sim x)*((\sim t)*(\sim x)\leqslant((\sim s)*(\sim t))$ * $(\sim x)=((\sim s)*(\sim x))*(\sim t)=(x*s)*(\sim t)=t*\sim(x*s).$

Further, by $y*(x*(\sim y)) \le y*x$ in [3] and $x*y \le \sim y$, we have $z*((x*s)*(\sim z) \le z*(x*s) \le \sim (x*s)$.

Hence

$$t * (\sim(x * s)) \le t * (z * ((x * s) * (\sim z)))$$

$$= t * (z * ((\sim s * \sim x) * (\sim y)))$$

$$= t * (z * ((\sim s * \sim z) * (\sim x)).$$

Applying the well known formula $y * x \leq \sim x$ and ((5) in [2]), we have

$$t * (z * ((\sim s * \sim z) * (\sim x))$$

 $\leq t * (z * ((\sim s * \sim z) * (y * x))$

and we have

$$(x*s)*(x*t)$$

 $\leq t*(z*(((\sim s)*(\sim z))*(y*x))).$

Next we shall consider a formula given in J. Lukasiewicz and A. Tarski $\lceil 4 \rceil$, then we have

Theorem 3. In a B-algebra, we have

$$x * w \leq (x * (((u * t) * (s * t)) * ((u * s) * r)) * (((\sim t) * s) * (\sim r)))) * ((y * z) * y)).$$

Proof. Clearly $y * z \le y$, i.e. (y * z) * y = 0. We shall prove $(((u * t) * (s * t)) * ((u * s) * r)) * (((\sim t) * s) * (\sim r)) = 0$,

then the right side of the formula is x*(0*0)=x by ((17) in [3]). Hence we have $x*w \le x$, which completes the proof. Now we prove the auxiliary formula:

$$((u*t)*(s*t))*((u*s)*r) \leq ((u*s)*t)*((u*s)*r) = (\sim t * \sim (u*s)) * (\sim r * \sim (u*s)) \leq (\sim t * \sim r) * \sim (u*s) = (r*t) * \sim (u*s) = (r*\sim(u*s)) * t = (\sim r * (u*s)) * t.$$

Consider $((r*t)*\sim(u*s))*((\sim t*s)*r)$, then the expression is equal to

$$((r*t)*\sim(u*s))*((\sim t*\sim r)*s) = ((r*t)*\sim(u*s))*((r*t)*s) \leq (s*\sim(u*s))*(r*t) \leq s*(\sim(u*s)).$$

From ((8) in [1]), we have $u * s \le \sim s$. Hence $s \le \sim (u * s)$. Therefore, from ((5) in [3]), we have $s * (\sim (u * s)) \le s * s = 0$. Hence we have $(((u * t) * (s * t)) * ((u * s) * r)) * ((\sim t * s) * (\sim r)) = 0$,

and we complete the proof of Theorem 3.

Remarks. Theorem 1 is proved in the *I*-algebra which is a generalisation of *B*-algebra and corresponds to the implicational propositional calculus. The detail is contained in the former paper by Y. Imai and the present writer. Theorem 2 characterizes the *B*-algebra. This will be shown in a later paper. To give a proof of Theorem 3 by J. Lukasiewicz and A. Tarski, S. Tanaka used the idea of my above proof. For the detail, see S. Tanaka [7].

References

- [1] K. Iséki: Algebraic formulations of propositional calculus. Proc. Japan Acad., 41, 803-807 (1965).
- [2] —: Axiom systems of B-algebra. Proc. Japan Acad., 41, 808-811 (1965).

- [3] —: A characterization of Boolean algebra. Proc. Japan Acad., 41, 893-897 (1965).
- [4] J. Lukasiewicz and A. Tarski: Untersuchungen über den Aussagenkalkül. C. R. de Varsovie, Cl. III, 23, 30-50 (1930).
- [5] A. N. Prior: Formal Logic. Oxford (1962).
- [6] A. Rose: A formulation of the C-0 propositional calculus. Proc. Cambridge Philos. Soc., 47, 635-636 (1951).
- [7] S. Tanaka: On axiom systems of propositional calculus, XIII. Proc. Japan Acad., 41, 904-907 (1965).