133. Operators of Discrete Analytic Functions

By Sirō Hayabara
Department of General Education, Kōbe University
(Comm. by Kinjirô Kunugi, m.J.A., June 13, 1966)

1. The convolution product. We are concerned with complexvalued functions $f(x, y)$ of two independent integral variables x and y satisfying the following condition.

Let x and y be any integers, and put
$f_{0}=f(x, y), \quad f_{1}=f(x+1, y), f_{2}=f(x+1, y+1), f_{3}=f(x, y+1)$,
$\bar{f}_{0}=\left(f_{0}+f_{1}\right) / 2, \quad \bar{f}_{1}=\left(f_{1}+f_{2}\right) / 2, \quad \bar{f}_{2}=\left(f_{2}+f_{3}\right) / 2, \quad \bar{f}_{3}=\left(f_{3}+f_{0}\right) / 2$.
Let $p(\neq 1)$ is an arbitrary real or complex number, then
is equivalent to
(1.1)

$$
L_{q} f \equiv f_{0}+q f_{1}-f_{2}-q f_{3}=0
$$

where $q=(1+p) /(1-p)$.
The function f is said to be discrete analytic in R, if the condition (1.1) is satisfied for every x and y in a simply connected region R in the $x-y$ plane. The set of all discrete analytic functions in R is denoted by $\boldsymbol{A}(R)$, or briefly \boldsymbol{A}. Duffin's discrete analytic functions [1], [2] are the special case whence $p=q=i$.

Denote for brevity

$$
f(x, y) \equiv f(z), z \equiv(x, y), z_{r} \equiv\left(x_{r}, y_{r}\right)
$$

where x_{r} and y_{r} are integers. The points of the $x-y$ plane with integer coordinates are called lattice points.

Let z_{r}, z_{r+1} be consecutive lattice points. The double dot integral along a chain $z_{0}, \cdots, z_{r}, z_{r+1}, \cdots, z_{n}$ is defined by

$$
\begin{equation*}
\int_{z_{0}}^{z_{n}} f(t): g(t) \delta t \equiv \sum_{r=0}^{n-1} \bar{f}_{r} \bar{g}_{r} \delta_{r}, \quad \delta_{r}= \pm 1, \pm p, \tag{1.2}
\end{equation*}
$$

where $\bar{f}_{r}=\left[f\left(z_{r}\right)_{z_{0}}+f\left(z_{r+1}\right)\right] / 2, \quad \bar{g}_{r=0}=\left[g\left(z_{r}\right)+g\left(z_{r+1}\right)\right] / 2$,
$\delta_{r}=1$ or -1 respectively if $y_{r+1}=y_{r}$ and $x_{r+1}=x_{r}+1$ or $x_{r+1}=x_{r}-1$, and $\delta_{r}=p$ or $-p$ respectively if $x_{r+1}=x_{r}$ and $y_{r+1}=y_{r}+1$ or $y_{r+1}=$ $y_{r}-1$.

The double dot integral of two integral variables

$$
\int_{0}^{z} f(z-t): g(t) \delta t
$$

is said the convolution product of $f(x, y)$ and $g(x, y)$, and is denoted by $f * g$, i.e.

$$
\begin{equation*}
(f * g)(z) \equiv \int_{0}^{z} f(z-t): g(t) \delta t \tag{1.3}
\end{equation*}
$$

where $0=(0,0)$ and $z=(x, y)$.
Equation (1.3) requires that not only the chain $0=z_{0}, z_{1}, \cdots, z_{n}=z$ lies in R, but also the chain $z-z_{0}, z-z_{1} \cdots, z-z_{n}$ lies in R.

Then we have following theorems similar to those in [1], [2].
Theorem 1.1. If f and $g \in \boldsymbol{A}(R)$, the convolution product (1.3) is independent of the path of integration in R, and the operation * is commutative, i.e.

$$
\begin{equation*}
f * g=g * f \tag{1.4}
\end{equation*}
$$

Further the convolution product $(f * g)(z)$ is discrete analytic in R.

Theorem 1.2. If f, g, and $h \in \boldsymbol{A}(R)$ in a rectangular region R containing the origin, then the operation $*$ is associative, i.e. (1.5)

$$
(f * g) * h=f *(g * h)
$$

We can uniquely determine the values of $f(x, y)$ in a finite rectangular region R by the condition (1.1) for the values of f at lattice points on the x and y axes in R. If $f \in \boldsymbol{A}(R)$ and $f \notin \boldsymbol{A}(E-R)$, we can extend f so that $f \in \boldsymbol{A}(E), R \subset E$, defining suitably the values of f in $E-R$. Thus we have the region of analyticity of the finite rectangular domain or the whole $x-y$ plane. We can restrict (x, y) to be in the first quadrant of the $x-y$ plane without losing the generality.

Let z_{n-1}, z_{n} be consecutive lattice points. If

$$
\bar{f}_{z_{n}}=\left[f\left(z_{n-1}\right)+f\left(z_{n}\right)\right] / 2=0 \quad \text { for all } n=1,2,3, \cdots \text {, }
$$

then $f(z)$ is called pseudo zero function and is denoted by $f(z)=0^{*}$, and let us denote the class of all pseudo zero functions by \boldsymbol{A}_{0}. Therefore if $f \in \boldsymbol{A}_{0}$, then

$$
f\left(z_{n}\right)=\left\{\begin{array}{r}
c, \text { for even } n \\
-c, \text { for odd } n .
\end{array}\right.
$$

We define hereafter the mean of $f(x, y)$ on the axes as follows:

$$
\begin{aligned}
& \bar{f}_{m, 0}=[f(m, 0)+f(m-1,0)] / 2 \\
& \bar{f}_{0, n}=[f(0, n)+f(0, n-1)] / 2 .
\end{aligned}
$$

The class $\boldsymbol{A}(R)$ of discrete analytic functions is classified into the following three classes $\boldsymbol{A}_{0}, \boldsymbol{A}_{1}$, and \boldsymbol{A}_{2}.

1) \boldsymbol{A}_{0} is the class of functions of $\boldsymbol{A}(R)$ such that $\bar{f}_{n, 0}=0$ and $\bar{f}_{0, n}=0$ for all n.
2) \boldsymbol{A}_{1} consists of two classes \boldsymbol{A}_{x} and $\boldsymbol{A}_{y} . \boldsymbol{A}_{x}$ is the class of functions of $\boldsymbol{A}(R)$ such that

$$
\bar{f}_{m, 0}=0 \text { for all } m \text { and } \bar{f}_{0, n} \neq 0 \text { for some } n .
$$

$\boldsymbol{A}_{y}{ }^{\text {r }}$ is the class of functions of $\boldsymbol{A}(R)$ such that

$$
\bar{f}_{0, n}=0 \text { for all } n \text { and } \bar{f}_{m, 0} \neq 0 \text { for some } m .
$$

3) \boldsymbol{A}_{2} is the class of functions of $\boldsymbol{A}(R)$ such that $\bar{f}_{m, 0} \neq 0$ and $\bar{f}_{0, n} \neq 0$ for some m, n.

We obtain the following table on the convolution product $f * g$.
Since the convolution product $f * g$ is independent of the path of integration, when f and $g \in A$, we will take hereafter the path $[(0,0) \rightarrow(m, 0) \rightarrow(m, n)]$ or $[(0,0) \rightarrow(0, n) \rightarrow(m, n)]$. From the Table I we have the following theorem and corollary.

Theorem 1.3. Suppose that $f * g \equiv 0, f, g \in$ \boldsymbol{A}. If $g \in \boldsymbol{A}_{2}$, then $f \in \boldsymbol{A}_{0}$.

Corollary. Suppose that $f_{1}, f_{2} \in \boldsymbol{A}$ and $g \in \boldsymbol{A}_{2}$, then $f_{1} * g=f_{2} * g$ implies $f_{1}=f_{2}+0^{*}$.
2. Convolution quotient and Operator.

Theorem 2.1. Sup-

		A_{0}	\boldsymbol{A}_{1}		\boldsymbol{A}_{2}	
		$\boldsymbol{A}_{\boldsymbol{x}}$	\boldsymbol{A}_{y}			
\boldsymbol{A}_{0}			0	0		0
\boldsymbol{A}_{1}	$\boldsymbol{A}_{\boldsymbol{x}}$	0	$\boldsymbol{A}_{\boldsymbol{x}}$	0	$\boldsymbol{A}_{\boldsymbol{x}}$	
	\boldsymbol{A}_{y}		0	\boldsymbol{A}_{y}	\boldsymbol{A}_{y}	
		0	$\boldsymbol{A}_{\boldsymbol{x}}$	$\boldsymbol{A}_{\boldsymbol{y}}$	\boldsymbol{A}_{2}	pose that $f * g=h, f, g$, and $h \in \boldsymbol{A}$.

If $h(0,0)=0, \bar{g}_{1,0} \neq 0$, and $\bar{g}_{0,1} \neq 0$, then the function $f(x, y)$ is uniquely determined by the given functions g and h for an initial condition $f(0,0)=c$.

Corollary. When

$$
\left\{\begin{array}{l}
\bar{g}_{1,0}=\bar{g}_{2,0}=\cdots=\bar{g}_{m-1,0}=0, \bar{g}_{m, 0} \neq 0, \tag{2.1}\\
\bar{g}_{0,1}=\bar{g}_{0,2}=\cdots=\bar{g}_{0, n-1}=0, \bar{g}_{0, n} \neq 0,
\end{array}\right.
$$

the following condition (2.2) is the necessary and sufficient condition that $f \in \boldsymbol{A}$ is uniquely determined from $f * g=h(g, h \in \boldsymbol{A})$ for $f(0,0)=c$.

$$
\left\{\begin{array}{l}
h(0,0)=h(1,0)=h(2,0)=\cdots=h(m-1,0)=0, \quad \text { and } \tag{2.2}\\
h(0,1)=h(0,2)=\cdots=h(0, n-1)=0 .
\end{array}\right.
$$

When $f * g=h$, where $g \in \boldsymbol{A}_{2}, h \in A$, we denote that

$$
\begin{equation*}
f=h / g . \tag{2.3}
\end{equation*}
$$

If h does not satisfy (2.2) then $f \notin \boldsymbol{A}$ and $f \in \boldsymbol{O p}$, where $\boldsymbol{O p}$ is a set of operators, the definition of which will be given soon.

Consider the set \boldsymbol{A} of all discrete analytic functions $f(x, y)$ defined at every lattice point in the first quadrant. Then the set \boldsymbol{A} is a commutative ring with respect to usual addition and convolutional multiplication.

We consider now ordered pairs (a, b) of elements a, b of \boldsymbol{A}, where $b \in \boldsymbol{A}_{2}$. Two ordered pairs (a, b) and (c, d) are said to be equivalent if and only if $a * d=b * c$, and the equivalence relation is denoted by

$$
\begin{equation*}
(a, b) \equiv(c, d) \tag{2.4}
\end{equation*}
$$

It is proved that the relation \equiv satisfies the usual equivalence relation. A class of pairs which are equivalent to an ordered pair (a, b), $b \in \boldsymbol{A}_{2}$, is called an operator, and is denoted by a / b. In order that the set of operators contains the set of functions of \boldsymbol{A}, we identify a function $a \in \boldsymbol{A}$ with the following operator:

$$
\begin{equation*}
a=(a * k) / k\left(k \in \boldsymbol{A}_{2}\right) . \tag{2.5}
\end{equation*}
$$

It is easy to see that (2.5) does not depend on the choice of k. Thus we see $O \boldsymbol{p} \supset \boldsymbol{A}$, where $\boldsymbol{O p}$ denotes the set of operators.

Addition and multiplication in $\boldsymbol{O p}$ are defined as follows.

$$
\left\{\begin{array}{l}
\frac{a}{b}+\frac{c}{d}=\frac{a * d+b * c}{b * d} \tag{2.6}\\
\frac{a}{b} \cdot \frac{c}{d}=\frac{a * c}{b * d} \quad\left(b, d \in \boldsymbol{A}_{2}\right) .
\end{array}\right.
$$

Then the set $\boldsymbol{O p}$ is a commutative ring with respect to addition and multiplication.

Example 1. Numerical operator $[\alpha]$. The operator $(\alpha a) / a$, ($\alpha \in \boldsymbol{A}_{2}$) is called the numerical operator, and is denoted by [α] or α for brevity, where α is a real or complex number.

Example 2. Integral operator l. A function f such that $f(x, y)=1$ is an element of A, and is expressed by (2.5) as follows:

$$
\begin{equation*}
1=(1 * f) / f=\left(\int_{0}^{z} f \delta t\right) / f\left(f \in \boldsymbol{A}_{2}\right) \tag{2.7}
\end{equation*}
$$

Hence $f(x, y)=1$ corresponds to an integral operator and is denoted by l as an operator.

Example 3. Derivative operator s. The convolutional inverse of the operator l is called the derivative operator and is denoted by s.

$$
\begin{equation*}
s=[1] / l=f /\left(\int_{0}^{z} f \delta \partial t\right)\left(f \in A_{2}\right) . \tag{2.8}
\end{equation*}
$$

3. Pseudo power and pseudo fractional power. R. J. Duffin discussed in [1] the n-th pseudo power $z^{(n)}$, which is defined by

$$
\begin{equation*}
z^{(n)}=n \int_{0}^{z} t^{(n-1)} \delta t, \quad z^{(0)}=1, \tag{3.1}
\end{equation*}
$$

and he proved $z^{(n)} \in A$. R. J. Duffin and C. S. Duris proved in [2] the following equalities:

$$
\begin{gather*}
n!\int_{0}^{z} \int_{0}^{t_{1}} \cdots \int_{0}^{t_{n}} f\left(t_{n+1}\right) \delta t_{n+1} \cdots \delta t_{1}=\int_{0}^{z}(z-t)^{(n)}: f(t) \delta t . \tag{3.2}\\
\frac{z^{(n)}}{n!} * \frac{z^{(m)}}{m!}=\frac{z^{(n+m+1)}}{(n+m+1)!} . \tag{3.3}
\end{gather*}
$$

These are evident from the point of view of operators, since

$$
\begin{equation*}
\frac{z^{(n)}}{n!}=l^{n+1} \quad(n: \text { positive integer }) . \tag{3.4}
\end{equation*}
$$

Pseudo powers of $f \in \boldsymbol{A}$ are denoted as follows:

$$
\begin{equation*}
\overbrace{f * f * \cdots * f}^{n}=f^{* n} \tag{3.5}
\end{equation*}
$$

Theorem 3.1. Suppose that $f \in \boldsymbol{A}$ and $f(0,0)=0$. Then there exists $g \in \boldsymbol{A}$ such that

$$
\begin{equation*}
g^{* n}=f(n: \text { positive integer }) \tag{3.6}
\end{equation*}
$$

if $f(1,0) \neq 0$ and $f(0,1) \neq 0$.
Corollary. A necessary and sufficient condition that there exist solutions g of the equation

$$
\begin{equation*}
g^{* n}=f(f, g \in \boldsymbol{A}) \tag{3.7}
\end{equation*}
$$

is as follows:

$$
\left\{\begin{array}{l}
\left\{\begin{array}{l}
f(0,0)=f(1,0)=\cdots=f(p n, 0)=0, \quad f(p n+1,0) \neq 0, \quad \text { and } \\
f(0,1)=f(0,2)=\cdots=f(0, q n)=0, f(0, q n+1) \neq 0
\end{array}\right. \tag{3.8}\\
\qquad\binom{p=0,1,2, \cdots}{q=0,1,2, \cdots}
\end{array}\right.
$$

If the condition (3.8) does not hold, the solutions of (3.7) may or may not exist in Op. Namely, we have

Theorem 3.2. Suppose that

$$
\left\{\begin{array} { l l }
{ \overline { f } _ { 1 , 0 } = \overline { f } _ { 2 , 0 } = \cdots = \overline { f } _ { p - 1 , 0 } = 0 , } & { \overline { f } _ { p , 0 } \neq 0 , }
\end{array} \quad \text { and } \quad \left\{\begin{array}{ll}
\bar{f}_{0,1}=\bar{f}_{0,2}=\cdots=\bar{f}_{0, q-1}=0, & \bar{f}_{0, q} \neq 0,
\end{array}\right.\right. \text { Then }
$$

(1) there exists $x \in \boldsymbol{O p}$ such that $x^{* n}=f$, if $p \equiv 1(\bmod n)$ and $q \equiv 1$ $(\bmod n)$, and
(2) there is not exist $x \in \boldsymbol{O p}$ such that $x^{* n}=f$, if $p \not \equiv 1(\bmod n)$ or $q \not \equiv 1(\bmod n)$.

We denote hereafter one of pseudo n-th roots g of $f \in A$, such that $g(0,0)=0$, by

$$
\begin{equation*}
g=f^{* \frac{1}{n}} . \tag{3.10}
\end{equation*}
$$

Then general one of pseudo n-th roots of $f \in A$, such that $g_{1}(0,0)=c$, is given by $g_{1}=f^{\frac{1}{n}}+0^{*}$.

For example we define that

$$
\frac{z^{\left(\frac{m}{n}\right)}}{\Gamma\left(\frac{m}{n}+1\right)}=\left\{\frac{\boldsymbol{z}^{(n+m-1)}}{\Gamma(n+m)}\right\}^{*^{\frac{1}{n}}}
$$

to which corresponds operationally

$$
l^{\frac{m}{n}+1}=\left(l^{n+m}\right)^{\frac{1}{n}}
$$

The detailed proofs of the results obtained in this paper will be published in [3].

References

[1] R. J. Duffin: Basic properties of discrete analytic functions. Duke Math. Jour., 23, 335-363 (1956).
[2] R. J. Duffin and C. S. Duris: A convolution product for discrete function theory. Duke Math. Jour., 31, 199-220 (1964).
[3] S. Hayabara: Operational calculus on the discrete analytic functions. Mathematica Japonicae, 11 (1) (1966) (to be published).
「4] J. Mikusiński: Operational Calculus. Warszawa (1959).

