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1. The convolution product. We are concerned with complex-
valued functions f(x, y) of two independent integral variables x and
y satisfying the following condition.

Let x and y be any integers, and put
fo-f(x, y), f--f(xH-1, y), fi.--f(xH-1, y/l), f3--f(x, yH-1),
]0--(f0+fi)/2, --(f+f)/2, --(fi.+f)/2, =(f+fo)/2.
Let p(:/:l) is an arbitrary real or complex number, then

fo= (
is equivalent to
(1.1) Lf--fo+qfi--f--qf=O,
where q--(1 +p)/(1--p).

The function f is said to be discrete analytic in R, if the
condition (1.1) is satisfied for every x and y in a simply connected
region R in the x-y plane. The set of all discrete analytic functions
in R is denoted by A(R), or briefly A. Duffin’s discrete analytic
functions [I], [2] are the special case whence p-q--i.

Denote for brevity
f(x, y)=-f(z), z--(x, y), z--(x, y)

where x and y are integers. The points of the x-y plane with
integer coordinates are called lattice points.

Let z, z+ be consecutive lattice points. The double dot integral
along a chain z0,..., z, z+, ..., z is defined by

(1.2) t)" g(t)at ]fga, a-- +/- 1, +_ p,
’-"0

where fi-- [f(z)-Ff(z+l)]/2, ---- [g(z)H- g(z+)]/2,
--1 or --1 respectively if y+--y and x+--x-F1 or x+,--x--l,
and a-p or -p respectively if x+-x and y+-y+l or y+-
y-l.

The double dot integral of two integral variables

’f(z--t): g(t)at

is said the convolution product of f(x, y)and g(x, y), and is denoted
by f, g, i.e.

(1.3) (f , g)(z) =_ z-t)" g(t)at,
where 0-(0, 0) and z-(x, y).

Equation (1.3) requires that not only the chain O-zo, z, ..., z.-z
lies in R, but also the chain Z-Zo, z--z..., z--z. lies in R.
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Then we have following theorems similar to those in [1], [2].
Theorem 1.1. If f and g e A(R), the convolution product (1.3)

is independent of the path of integration in R, and the operation
is commutative, i.e.
(1.4) f. g-g f.
Further the convolution product (f. g)(z) is discrete analytic in
R.

Theorem 1.2. If f, g, and h e A(R) in a rectangular region
R containing the origin, then the operation is associative, i.e.
(1.5) (f. g) h:f . (g h).

We can uniquely determine the values of f(x, y) in a finite rectan-
gular region R by the condition (1.1) for the values of f at lattice
points on the x and y axes in R. If fe A(R) and fe A(E-R), we can
extend f so that fe A(E), RcE, defining suitably the values of f in
E-R. Thus we have the region of analyticity of the finite rectangular
domain or the whole x-y plane. We can restrict (x, y) to be in the
first quadrant of the x-y plane without losing the generality.

Let z._, z be consecutive lattice points. If

f- [f(z_)+f(z)/2-O for all n-l, 2, 3, ...,
then f(z) is called pseudo zero function and is denoted by f(z)-0*,
and let us denote the class of all pseudo zero functions by A0.
Therefore if fe A0, then

c, for even n
f(z)- -c, for odd n.

We define hereafter the mean of f(x, y) on the axes as follows:
3,,0= If(m, 0)+f(m-1, 0)]/2
,= If(0, n)+f(O, n-l)]/2.

The class A(R) of discrete analytic functions is classified into
the following three classes A0, A, and A.

1) A0 is the class of functions of A(R) such that f,0-0 and
f0,--0 for all n.

2) A consists of two classes A and A. A, is the class of
functions of A(R) such that

j,0-0 for all m and .o,:/:0 for some n.
A*is the class of functions of A(R) such that

,,=0 for all n and f,0:/: 0 for some m.
3) A is the elass of functions of A(R) such that f,0:/:0 and

f0,:/: 0 for some m, n.
We obtain the following table on the eonvolution produet f. g.
Since the convolution product f. g is independent of the path

of integration, when f and g e A, we will take hereafter the path
(0, 0)--(m, 0)-(m, n) or (0, 0)-(0, n)--(m, n). From the Table
I we have the following theorem and corollary.
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Theorem 1.3. Sup-
pose that f. g--O, f g e
A. If g e A, then fe A0.

Corollaryo Suppose
that fi, f e A and g e A2,
then fi g-ft. g implies
f--f+O*.

2. Convolution quo.
tient and Operator.

gf

A2

Ao

Table I.

Ay

Ay

A2

A

Ay

Theorem 2.1. Sup-
pose that f. g=h, f, g, and he A.

If h(0, 0)= 0, Y,0 0, and o,O, then the function f(x, y) is
uniquely determined by the given functions g and h for an initial
condition f(0, 0)- c.

Corollary. When
 o,0 0,

tYo,- Yo,.-’" Yo,.-- o, Yo, o,
the following condition (2.2) is the ecessary and sufficient condi-
tion that f A is uniquely determined from f, g--h (g, h A) for
f(O, O)--c.

(2.2) h(0, 0)-h(1, 0)-h(2, 0)--...-h(m--1, 0)-0, and
(h(0, 1)-h(0, 2)=...--h(0,

When f. g-h, where g e A, h e A, we denote that
(2.3) f--h/g.

If h does not satisfy (2.2) then fe A and fe Op, where Op is
a set of operators, the definition of which will be given soon.

Consider the set A of all discrete analytic functions f(x, y)
defined at every lattice point in the first quadrant. Then the set A
is a commutative ring with respect to usual addition and convolu-
tional multiplication.

We consider now odered pairs (a, b) of elements a, b of A,
where b eA. Two ordered pairs (a, b) and .(c, d) are said to be
equivalent if and only if a. d--b. c, and the equivalence relation
is denoted by
(2.4) (a, b) - (c, d).

It is proved that the relation satisfies the usual equivalence
relation. A class of pairs which are equivalent to an ordered pair
(a, b), be A., is called an operator, and is denoted by a/b. In order
that the set of operators contains the set of functions of A, we
identify a function a e A with the following operator:
(2.5) a= (a )/ ( e A0.
It is easy to see that (2.5) does not depend on the choice of k.
Thus we see OpA, where Op denotes the set of operators.
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Addition and multiplication in Op are defined as follows.
c_ a.d+b.c
d b.d

(2.6) , a_a_ c a . c (b, ge AO.
d b.d

Then the set Op is a commutative ring with respect to addition
and multiplication.

Example 1. Numerical operator . The operator (a)/a,
(a e A:) is called the numerical operator, and is denoted by [a or
a for brevity, where a is a real or complex number.

Example 2. Integral operator 1. A function f such that
f(x, y)--1 is an element of A, and is expressed by (2.5) as follows:

(2.7) 1-(1. f)/f-(I:ft)/f (f e A2).

Hence f(x, y)-i corresponds to an integral operator and is
denoted by 1 as an operator.

Example 3. Derivative operator s. The convolutional inverse
of the operator is called the derivative operator and is denoted
by s.

(2.8) s- l/1-f/(I:ft) (f e A2).

3. Pseudo power and pseudo tractional power. R.J. Duffin
discussed in [1 the n-th pseudo power z(), which is defined by

(3.1) z(")-n t(-)t,

and he proved z() e A. R. J. Duffin and C. S. Duris proved in
the following equalities:

t

n! m! (n+m+l)!
These are evident from the point of view of operators, since

(3.4)
z() + (n: positive integer).
n!

Pseudo powers of fe A are denoted as follows:

(3.5) f* f* * f=f*’.
Theorem 3.1. Suppose that fe A and f(0, 0)--0. Then there

exists g e A such that
(3.6) g*=f (n: positive integer)

if f(1, 0):/:0 and f(0, 1):/:0.
Corollary. A necessary and sucient condition that there

exist solutions g of the equation
(3.7) g*’=f f g e A)
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is as follows:
(3.8) f(0, 0)-f(1, 0)-...-f(pn, 0)-0, f(pn+l, 0):/=0, and

(f(0, l)--f(0, 2)- f(O, qn)--O, f(O, qn/ 1)=/=0
,p-0, ...)(q-0, 1, 2,

If the condition (3.8) does not hold, the solutions of (3.7) may
or may not exist in Op. Namely, we have

Theorem 3.2. Suppose that

[fl,o= fi.,o- f_l,o-O, f,oO, and
(3.9) (,=,- -j,_=0, ,=/=0. Then
(1) there exists x e Op such that x*--f if p--1 (rood n) and q--1
(rood n), and
(2) there is not exist x e Op such that x*--f, if pl (rood n) or
ql (rood n).

We denote hereafter one of pseudo n-th roots g of fe A, such
that g(0, 0)=0, by

(3.10) g--f*z.
Then general one of pseudo n-th roots of feA, such that

g(0, 0)--c, is given by g=f*/0*.
For example we define that

z

to which corresponds operationally

1-+- (l+)-.
The detailed proofs of the results obtained in this paper will

be published in 3.
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