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Geometries based on Canonical Equations
of Hamiltonian Types of
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By Tsurusaburo TAKASU
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(Comm. by Zyoiti SUETUNA, M.J.A., June 13, 1966)

In [87, I established non-connection methods for linear connections
in the Large bringing respective geometries to the “Erlanger
Programm”, the transformation group parameters being adequate
functions of the (local) coordinates and in [4] he extended them
further doubly to the case, where transformation group parameters
are adequate functions of the (local) coordinates (x) as well as of
(%, %, -~-,(50“), (t=dx/dt, ete.; t=curve parameter). In [5], [6], and
[8], M. Kurita studied the Finsler spaces by means of the canonical
equations of Hamiltonian types. In this note, I will, being suggested
by his means, establish the following geometries based on canonical
equations of Hamiltonian types of the II-geodesic curves in my sense:
(I) (Doubly) extended affine geometry, (II) (Doubly) extended Euclidean
geometry, (III) Other 20 (doubly) extended geometries indicated on
p. 247 of [14], (IV) Geometry of Finsler-Craig-Synge-Kawaguchi
spaces, all based on canonical equations of Hamiltonian types of II-
geodesic curves in the present author’s sense. (IV) is a detailed
exposition of the n-dimensional case of Art. 4 of [17.

I. (Doubly) Extended affine geometry based on canonical
equations of Hamiltonian types of Il-geodesic curves. 1.1, A
new method of treatment of Il-geodesic curves based on canonical
equations of Hamiltonian types. Consider

(L1) 0L @, By e, T, (A pty =1, 2, e, W),
which is global in the differentiable manifold M=) U, of class
C*(v=positive integer or - or w), where the open subset U, is the
domain of the local coordinates (x), since (I.1) is written in an
invariant form,

Let #*=2*t) be a parametrized curve, where ¢ is the canonical
parameter ([14], Art. 12; [15], Art, 14). Set

(L.2) dEZ 0., &, -+, @ )irdt,

(M)
(1'3) LZO)“(IE, 41.7, ce, X )ﬁﬂ:pﬂqlﬂ (qu:x”‘).
Then the Lagrangian equations for the extremal problem
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(L4) angt=o

become
(1.5) oL/ox*—d(0L/od*—d(0L/0%*)[dt+ « - +

(= 1) =g (H L ) dt ) /dt =0,
Set

L6) D OLJOGH—d@LG) dt+ - - - +(—1)*—d G L og") dt*~,
for (I1.3) anew, then (I.5) and (I.3) gives
(L7 Pun=0L/[dq*, ¢.=0L/[op",
forming Lagrangian canonical equations, and we have
0L =0p,4*+ p.0¢*=D.0td"+ p,04*=P.0g"*+ .0¢",
(1.8)  OL=0(p.4"*)+(Duog"—q"op.)
and consequently for

1.9) H=(p.g")— L,

we have
(1.10) 0H =d{(p.g*)— L}=q"0p.— Duoq",

whence follows the canonical equations of Hamiltonian types
(I.11) dq*/dt=0H/op,, dp./dt=—0H/dq*, (dH/dt=0).

The curves represented by (I1.6), (I.7) or by (1.11) will be called
(M)

the II-geodesic curves corresponding to w.(x,®,+++,a), which are
extremals of (I.4).
Take n constants a!, (I=1, 2, .-+, n) not all equal to 0 and set

(1.12) L'“d'L,
so that
(1.13) o' dlo,
(M) et (2)
(1-14) w}ll-(xv :br e, X ):a’lwﬂ-(xy 53, "'13;)’
(1.15) H'Eo'H = (a'p4*)— Lt = (pL¢*)— L+,
(I.16) 0H'=0{(pid*)— L'}=q¢*op.— Dpog*,
(1.17) dq*/dt=0H"YopL, (I: not summed), dp./dt=—dH"/dg",
(1.18) g¥gle, del=w'=ddé=d'o.

The (I.17) as well as -

(1.19) {p,ﬂ:aLl/aq“—d(aLl/aij")/dt—|— o oo (=122 QLY og) [ dEt

) pL=0L'[dg*, ¢.=0L/[op*, (ctf. (1.6), (L.7))

are other systems of camonical equations of the Il-geodesic curves,
p., pL, L', and H' are components of p,, P., L, and H respectively.
The 11-geodesic curves in the present author’s semse coincide with
the previous ones in [4] as will be shown as follows. From (I.8),
we obtain

(1.20) dL=d(p.¢")
and from (1.9):

(I.21) dL=d(p.4*)—dH,
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so that we have

(1.22) dH/dt=0,
From (1.2), we obtain
(1.23) d¢'=Lidt=a'Ldt=pldq*,
so that
(1.24)

5‘=§phdq“=pﬁq“ Sq*‘dm DLg*— Sdmgdqbphqhgg(dmdq“),

the condition for that the repeated integral may be converted into
the double integral, i.e., that the integrand is continuous, being
evidently satisfied. Now

(1.25) d*e'[de* = (dpL/dt)(dg*/dt)+ pi(d*g¥/dE?).
Since both terms on the right-hand side are written in invariant forms,
if we take a transformation g*=g“(q) such that d*gq*/dt*=0, from
(1.25), we must have

(1.26) dpldgr=0,
in which case (I.24) becomes of the form

g'=pLa"+pi, (pi=const.).

Writing &, &, &, and a for p, &, g, and p respectively, we obtain the
formulas of (doubly) extended affine transformation of the present
author ([4], (2.6), p. 872; [3], (3.2), p. 63):

(1.27) Bmal(, & -, E)80 4+ al, (| ah(e)]0)
accompanied by

(1.28) dE=di(e, &, -+, £ )de",

(1.29) dai(z, &, -+-, £)de" =0, (cf. (1.26)),

along the 1l-geodesic line-elements,
From (I1.27) and (1.28), we obtain the mnecessary condition

. ()
(1.30) dai(§, &, -+, £ )E"=0
for the Il-geodesic lime-elements.

The &' and the &' will be called the II-geodesic parallel coordinates,
Setting

(1.31) ds® de=Ldt,
from (1.23), we obtain
(1.32) g=al(s—s,), d&'=L'dt=a'ds.

Since d&'=a'ds, d&¢'=a'ds, from (1.28), we see that a' undergo
the transformation

(1.33) d’:ai,(&, é$ ) E )a’h ah($9 a, 0, %y O)a'h’
where @' are const. on summation with respect to h.
The (1.82) shows us that the II-geodesic curves behave as for
meet and join like straight lines. The s may be called the afine
length,
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1.2. (Doubly) Extended affine geometry. That the totality of
the (doubly) extended affine transformations (1.27) forms a group may
be shown by utilizing (I.30) quite as in p.64 of [3]. This group
will be called the (doubly) extended affine group and the geometry
under it the (doubly) extended affine geometry.

1.3. The relation of the present method with that of [4].
Since "

(1.34) w'=ad'w=p(x, &, -+ -, x )dx~,
we can show by straight forward calculation the identity:

(135) die!/ds*=d(w'/ds)/ds =pL(, &, - -, & }dw*/ds®
+ A, & - -, @ Ndar/ds)(da/ds)),
(M)

where the parameter 43, of teleparallelism for pi(x,®, ---, ) are
defined by
(1.36)  dpy/ds—Ay,pi(dw’[ds)=0, | dpy/ds+ 4y, pi(d*[ds)=0,
the p} being defined by
(1.37) pLp} =0} & Pipi =0}
for p!, the d’s being Kronecker deltas,.
Thus the present method is equivalent to that of [4].
1.4. Another procedure. Since we have (1.32), if we start with
& in place of x*, (1.34) becomes
(1.38) o'=ad'w=pi¢ a,0, .-, O)dfh
and thus our theory reduces to that of (simply) extended geometry
but for that n arbitrary parameters (a') appear in addition,
II. (Doubly) Extended Euclidean geometry based on
canonical equations of Hamiltonian types of Il-geodesic curves.
II.1. (Doubly) Extended Euclidean geometry based on canonical
equations of Hamiltonian types of Il-geodesic curves. When the
fundamental quadratic form of the (doubly) extended Euclidean
geometry is

(IL1) ds*=g,(o, &, - - -, © Ydardae,
it 18 always expressible in the form

(11.2) ds*=w'@,
where

(IL.3) D=, &, -, 3 o,

but for undergoing (doubly) extended orthogonal transformations.
If we adopt (1I.2) for (I.1), the results of I holds still and (I1.13)
gives

(11.4) w'=0'w'=ds*=(a'a")w?,
so that the condition
(1I1.5) adlat=1

accompanies and (I.12) and (I,15) give



No. 6] Non-Connection Methods for Some Connection Geometries 543

(11.6) H*=H'H', IL.7) L*=L'L}, dLl’=dL'dL’.
The (1.31) and the (1.32) show us that

(11.8) ds = Ldt*= L' L'dt*=d&'d e = w'w?,

(11.9) =d&'=Lidt=d'ds, (a‘a'=1),

(I1.10) dg_co._ds.

The (doubly) extended affine group becomes in this case the (doubly)
extended FEuclidean group and the (doubly) extended affine geometry
the (doubly) extended Euclidean geometry [4]. The (I1.3) shows us
further that

(IL.11) G = 0L,

In this way, we see that the present method leads us to the
(doubly) extended Ewuclidean geometry.

I1.2.  Another procedure. If we take the view-point of 1.4, our
theory reduces to that of (simply) extended Euclidean geometry but
Jor that n arbitrary parameters (a'), (a'a*=1) appear in addition.

III. Other (Doubly) extended geometries based on canonical
equations of Hamiltonian types of II-geodesic curves. III.1,
Other (Doubly) extended geometries based on camonical equations of
Hamziltontan types of Il-geodesic curves. All other (doubly) extended
geometries corresponding to the branches enlisted on p. 247 of [14]
may be treated similarly (Mutatis mutandis) by means of canonical
equations of Hamiltonian types of Il-geodesic curves.

IV. Geometry of Finsler-Craig-Synge-Kawaguchi spaces
based on canonical equations of Hamiltonian types of Il-geodesic
curves, IV.1, Finsler-Craig-Synge-Kawaguchi spaces. These
spaces are based on a certain integral

(IV.1) SF(w o, e, 30dt, (@' =da/dt, ete.)

satisfying the so-called Zermero’s conditions (cf. [137]). The Kawaguchi
space 1s reducible to the Finsler space having n transformation
parameters (a') in addition by transforming the coordinates (x*) to
II-geodesic rectangular coordinates (£') of the present author in the
base differentiable manifold (cf. (I.4)), so that dx*/ds=a*. Now for
the Finsler space corresponding to
(IV.2) dst=F*x, ©)(ds/dt)*(dt)?,
where F' is of degree one in £=dux/ds, we have
AV.3) ds*=g.(z, T)dardxr, (IV.4) gu..(x, 2)=3(0"F (x, T)/0L"0L").
The (IV.3) is always reducible to the form
(Iv.5) ds*=w'@', (W'=wi(x, L)dx*)
but for undergoing (doudbly) extended orthogonal transformations.
If we take (IV.5) for (I11.8), our theory of Il gives a geometry
of the Finsler-Craig-Synge-Kawaguchi spaces.
IV.2, Another procedure. Another procedure is to adopt the
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metric tensor ([13], p. 724, *g,,):
(
(IV-G) gll«v(xy ﬂ"}, ) %)):MF2F(M)MF(M)V+Q]§M()§V+*éjﬂ‘*é}w

(F=F(z, i, -, ).
The ds* is always expressible in the form (IV.5) and thus our theory
of III applies to the case of Finsler-Craig-Synge-Kawaguchi spaces.,
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