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Note on the Projective Modules
over Group Rings

By KSji UCHIDA
(Comm. by Kenjiro SHODA, M.J.A., Jan. 12, 1967)

Let R be a commutative ring with identity, and K its total
quotient ring. Let be a finite group of order . We assume that
no prime number dividing is a unit in R. Then, if P denotes a
finitely generated projective Rz-module, Swan 1, Theorem 8.1 has
shown that K(R)P is K-free under the :condition that R is a Dedekind
ring of characteristic zero. In this note we deal with this theorem
in weaker conditions on R. In the following we assume all modules
over R, Kr, are finitely generated unitary left modules.

Lemma 1o (Brauer, Nesbitt 3, Theorem 30.16) Let M, N be
Kr-modules, where K is a splitting field of zr. Let M, N be corre-
sponding matrix representations. Then M and N have the same
composition factors if and only if the matrices M(z), N(z) have the
same characteristic roots for each x

Lemma 2. (Giorgiutti, Rim 2, Lemma 2.2) Let 1 be an
Artinian ring of which Cartan matrix is non-singular. Then two
projective /-modules with the same composition factors are isomorphic.

Lemma 3. (Swan, Bass 2, Theorem 2) Let R be a commutative
local ring with the maximal ideal m, and K its total quotient ring.
Let ) be an R-projective R-algebra finitely generated as an R-module,
and we assume that R/m-algebra /m has the non-singular Cartan
matrix. Then for any projective )-modules P and P’, K(R)P-K(R)P’
implies P_P’.

A ring K is called semi-local if KIN is Artinian, where N denotes
the Jacobson radical of K. If K is commutative, it is equivalent
to say that there exist only a finite number of maximal ideals.

Lemma 4. Let K be a commutative semi-local ring, and zr a
finite group. Let P be a projective Kzr-module which is Kr’-free
for any cyclic subgroup r’ of zr, and we assume that the rank of P
over K is divisible by the order of z. Then P is Kzr-free.

Proof. Let N be the Jacobson radical of K. It is known by
[2, Lemma 2.4 that P is Kz-free if and only if (K/N)(R)P is
(K/N)zt-free. So we may assume that K--Kq...K is a direct
sum of the fields. If P--P...P, is the corresponding decom-
position, every P is Kzr-projective and Kzr’-free. If we prove that
P is Kz-free, P is Kr-free because P is K-free and so the ranks
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of P over K are the same for all i’s. Therefore we reduce the
lemma to the case that K is a field. But then by Noether-Deuring
theorem 3, Theorem 29.7J, P is Kr-free if and only if K’(R),P is
K’-free where K’ is any extension of K. If we put K’ as a
splitting field of 7r, the assertion follows from Lemmas 1 and 2.

Remark. V3, Lemma 78.2 states that a Kzr-module is K-free
if and only if it is K-free for each p and each p-Sylow subgroup
r,, where K is an algebraic number field. But this is not true.
Let be a cyclic group of order 6 generated by a. Let K be an
algebraic number field containing all the 6-th roots of unity. Then
Kr-?,K, where the sum runs over all the 6-th roots of unity,
and a acts on K-K as multiplying . Let M=K+K+K+K_
K_,+ K_.,., where w is a primitive 3-rd root of unity. Then M is
free over Sylow groups but not K-free.

Lemma 5. Let z be a cyclic group of order n= palm, (p, m)--1,
and r, r be subgroups of of orders pal, m respectively. Let k
be a field of characteristic p, and containing all the m-th roots of
unity. Then, if f,..., f denote all the primitive idempotents in
kr, all kTrf#’s are indecomposable kr-modules and they have the
same rank over k.

Proof. k.f-kzr(R)kTr,f--kzr as a kzr-module, so it is inde-
composable because kr is a local ring. It is also trivial about the
ranks.

Theorem 1. Let R be a commutative ring with identity such
that any zero divisor is in the Jacobson radical, and also we assume
that the total quotient ring K of R is semi-local. Let r be a finite
group of order . We assume that any prime number dividing n is
nonunit in R. Then for any finitely generated projective Ru-module
P, K(R)P is a free K-module.

Proof. Let p be a prime dividing n, and p a maximal ideal of
R which contains p. Rp denotes the localization of R at p. Then
R(R)P is Rpr- therefore Rr-projective for a p-Sylow subgroup
of . But RrT is a local ring because pRpTr is contained in the
Jacobson radical, and (R/O) is local. So Rp(R)P is Rpu-free, and
especially K(R),P=K(R),pRo(R),P has a rank divisible by the order of. (The assumption on R guarantees that K is also the total
quotient ring of Rp.) Then the rank of K(R),P is divisible by n.
By Lemma 4 we see that we need only to prove the theorem in the
cyclic case. Now we assume that r is a cyclic group of order
n=pdm, (p, m)= 1, and , denote the subgroups of orders pal, m
respectively. We proceed by the induction on the order of . If

(1), K(R)P- K(R)p(Rp(R)P) is K-free (p is any maximal ideal of
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R). We assume that K(R)P is Kzr-free. Let p be a maximal ideal
containing p. Then by Lemma 3 Rp(R)P is Rp,-free. By 2,
Lemma 2.4, R(R)P is Rp-free if and only if (R/pR)(R)P=(R/p)(R)P
is (R]p)r-free. We put k=R/p. By Noether-Deuring theorem we
may assume k contains all the m-th roots of unity. Then by
Lemma 5, k(R)P=-,a#.krf# is a decomposition to the indecomposable
components, where a# denotes the number of components isomorphic
to kf#. By considering the ranks over k, all a#’s are equal as
k(R)P is kzr,-free. Therefore we have k(R)P=a.kzc, and this
completes the proof.

Examples. R satisfies the assumptions of the theorem in the
following cases.

1) R=AX, X.,... is a polynomial ring over the ring A of
algebraic integers.

2) R is a ring such that no prine’-p n is a unit, and any zero
divisor is nilpotent. Then K is a local ring.

Next we assume that R is a noetherian ring. Then its total
quotient ring is semi-local by 4, IV, Corollary 3 of Theorem 11].
So we need only the trivial conditions on R by taking Serre’s theorems
[5 into account, i.e. we have Theorem 2 below.

Lemma 6. Let R be a commutative indecomposable noetherian
ring. Let be a finite group of order n, and any prime factor of
n be non-unit in R. Then R is also indecomposable.

Proof. We assume that R:z=AB is a decomposition to the
left ideals. Let p be a prime factor of n, be a p-Sylow subgroup
of , and p be a prime ideal containing p. Then Rpr--ApBp, and
Ap is R-projective, so Rp=-free. Therefore its rank over Rp is a
multiple of the order of . As we assumed that R is indecomposable,
its rank depends neither on p, nor on p 5, Proposition 4. Hence
it is divisible by the order of , and A must be equal to R.

Lemma 7. Let R be a commutative indecomposable noetherian
ring, and K be its total quotient ring. Then for any projective
R-module P, K(R)P is K-free.

Proof. Put K--K... K,, where K is indecomposable ideal of
K. Then K(R)P is K-free by 5, Proposition 6. So we need only to
prove that the rank of K(R)P over K does not depend on i. We
take a prime ideal m of K for each i. Then p=(K...K_
mK+...K,.)fR is a prime ideal of R, and there exists a
monomorphism of R-Rp, into K,m, by z,--xe, where e is the identity
element of K. As R is a local ring, R(R)P is R-free. So its rank
is equal to that of K,m(R)P, and then equal to that of K(R),P.
As R is indecomposable, the rank of R(R)P is independent of i, so
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is the rank of K(R)P.
Lemma 8. Let R be a commutative indecomposable noetherian

ring. Let 7 be a finite abelian group of order n, and any prime
factor of n be non-unit in R. Let K denote the total quotient ring
of R. Then for any projective RT-module P, K(R)P is Kw-free.

Proof. Let Q be the total quotient ring of R. Then
RcKTQ holds, and Q(R)a,P is Q-free by Lemma 7. By consider-
ing the isomorphism K(R)aP--Kv(R),P, it suffices to show the latter
is K-free. Put K-K(...(K,., where K is indecomposable
ideals. Then Q-Q(R):,K--],Q(R):,K holds, and no Q(R),K is zero

because KQ. In the direct decomposition K(R),,PK(R),P(
(K,(R)P, each K(R)P is K-projective, so it is K-free because

K is indecomposable semi-local ring. The rank of which over K is
equal to that of Q(R),K(R),P over Q(R):,K. But the latter is
independent of i, because Q(R),PQ(R):,,K(R),P is Q-free. Hence
K(R)aP-K(R)aP is Ku-free.

Theorem 2. Let R be a commutative ring with identity which
is noetherian and indecomposable. Let K denote its total quotient
ring. Let be a finite group of order n, and we assume that any
prime factor of n is non-unit in R. Then for any finitely generated
projective Ru-module P, K(R)P is a free K-module.

Proof. By Lemma 8, K(R)aP is K’-free for any cyclic subgroup

’ of . So we need only to prove the last assumption of Lemma
4. Let p be a prime factor of n, and p be a prime ideal containing
p. Then R(R)P is Rp-free as in the proof of Theorem 1, where
u is a p-Sylow subgroup of . Let K denote the total quotient
ring of Ro. Then Ko(R)P is K-free. There is a natural homo-
morphism of K into Kp. So the rank of K(R)P over K is equal to
that of K(R)P=K(R).K(R)P over K. The rank of K(R)P is
divisible by the order of z:, so is the rank of K(R)P. As p is any
prime factor of n, the rank of K(R)aP is divisible by the order of. Therefore we complete the proof of the theorem by Lemma 4.
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