2. Weak Topologies and Injective Modules

By Masao NARITA

International Christian University, Mitaka, Tokyo (Comm. by Zyoiti SUETUNA, M.J.A., Jan. 12, 1967)

Wu showed in his paper [1] that a characterization of selfinjective rings can be given in terms of weak topologies. The aim of this paper is to generalize this result and give a characterization of injective modules.

Throughout this paper, R will denote a ring (not necessarily commutative) with the identity 1. All R-modules considered will be unitary. We shall show that, if an R-module Q has the property: ann Q=0, where ann Q denotes the ideal of R consisting of all elements annihilating Q, then a necessary and sufficient condition for the module Q to be injective can be given in terms of weak topologies. In addition to it, we shall show at the end of this paper, that such a simple generalization of the theorem due to Wu is not always available in case ann $Q \neq 0$.

1. Weak topologies. Let Q be a left *R*-module. Then $\operatorname{Hom}_{R}(Q, Q)$ can be regarded as a ring with the identity ι_{Q} . Λ will denote this ring $\operatorname{Hom}_{R}(Q, Q)$.

Let M be a left R-module. Then $\operatorname{Hom}_{R}(M, Q)$ can be regarded as a left Λ -module, since we have $\varphi \circ \rho \in \operatorname{Hom}_{R}(M, Q)$ for any $\varphi \in \Lambda$ and for any $\rho \in \operatorname{Hom}_{R}(M, Q)$.

Now we shall give the module Q a structure of topological space with the discrete topology. In connexion with this topology, we shall give the following definition of *B*-topology on a module *M*. (cf. Chase [2])

Definition. Let B be a Λ -submodule of the left Λ -module $\operatorname{Hom}_{R}(M, Q)$. Then the coarsest topology on M such that every element of B is a continuous mapping from M into Q will be called the weak topology on M induced by B or simply the B-topology on M.

It is easy to see that all subsets of M of the form $\bigcap_{i=1}^{n} \text{Ker } \beta_i$, $\beta_i \in B, i=1, 2, \dots, n$ make a base of neighbourhood system of $0 (\in M)$ in the *B*-topology.

It is obvious that the *B*-topology on *M* is Hausdorff if and only if, for each non-zero $x(x \in M)$, there exists $\beta(\beta \in B)$ such that $x \notin$ Ker β . According to Wu, we shall say *B* is *separating* if the weak topology on *M* induced by *B* is Hausdorff.

It is evident that $\operatorname{Hom}_{R}(Q, Q)$ -topology on Q is the discrete

No. 1]

topology since $\operatorname{Hom}_{R}(Q, Q)$ includes the identity mapping ι_{Q} .

Theorem 1. Let $C_B \operatorname{Hom}_R(M, Q)$ be a subset of $\operatorname{Hom}_R(M, Q)$ consisting of all continuous *R*-homomorphisms from *M* with the *B*-topology into *Q* with the discrete topology. Then $C_B \operatorname{Hom}_R(M, Q)$ is a left Λ -submodule of the module $\operatorname{Hom}_R(M, Q)$.

Proof. It is evident that the $C_B \operatorname{Hom}_R(M, Q)$ is a left Z-submodule of the Z-module $\operatorname{Hom}_R(M, Q)$. Hence it is sufficient to prove that $\varphi \circ C_B \operatorname{Hom}_R(M, Q) \subset C_B \operatorname{Hom}_R(M, Q)$ for any $\varphi \in \operatorname{Hom}_R(Q, Q)$. Let ρ be an arbitrary element of $C_B \operatorname{Hom}_R(M, Q)$, then, by the definition of the B-topology, there exist $\beta_1, \beta_2, \dots, \beta_n, \beta_i \in B, i$ $=1, 2, \dots, n$ such that $\operatorname{Ker} \rho \supset \bigcap_{i=1}^n \operatorname{Ker} \beta_i$. Since $\operatorname{Ker}(\varphi \circ \rho) \supset \operatorname{Ker} \rho$, it is easy to see that $\operatorname{Ker}(\varphi \circ \rho) \supset \bigcap_{i=1}^n \operatorname{Ker} \beta_i$. Therefore we have proved that $\varphi \circ \rho$ is a continuous mapping, i.e. an element of $C_B \operatorname{Hom}_R(M, Q)$.

In case Q=R, we can define the anti-isomorphism t from the ring $\operatorname{Hom}_{R}(R, R)$ onto the ring R itself by $t(\varphi) = \varphi(1), \varphi \in \operatorname{Hom}_{R}(R, R)$. Let M be a left R-module, then it is easy to verify that $\operatorname{Hom}_{R}(M, R)$ can be regarded as a right R-module. After these considerations, we have immediately the following corollary to the Theorem 1:

Corollary. Let B be a right R-submodule of the module $\operatorname{Hom}_{R}(M, R)$. Then $C_{B}\operatorname{Hom}_{R}(M, R)$ is a right R-submodule of the module $\operatorname{Hom}_{R}(M, R)$.

The following theorem is a main theorem of this paper:

Theorem 2. Let Q be a finitely generated left R-module. Suppose ann Q=0. Then the following four statements (i)~(iv) are equivalent:

(i) Q is left *R*-injective.

(ii) $B=C_B \operatorname{Hom}_R(M, Q)$ for any left *R*-module *M* (not necessarily finitely generated) and any Λ -submodule *B* of the Λ -module $\operatorname{Hom}_R(M, Q)$.

(iii) $B = C_B \operatorname{Hom}_R(M, Q)$ for any left *R*-module *M* and any separating *A*-submodule *B* of the *A*-module $\operatorname{Hom}_R(M, Q)$.

(iv) $B = C_B \operatorname{Hom}_R(I, Q)$ for any left ideal I of R and any separating Λ -submodule B of the Λ -module $\operatorname{Hom}_R(I, Q)$.

Proof. (ii) \Rightarrow (iii) and (iii) \Rightarrow (iv) are self-evident.

 $(iv) \rightarrow (i)$ will be proved as follows: Suppose that Q is not left *R*-injective. Then there exists a left ideal I of *R* such that the homomorphism j^* : Hom_{*R*}(*R*, *Q*) \rightarrow Hom_{*R*}(*I*, *Q*) induced by the canonical injection $j: I \rightarrow R$ is not surjective. (See Cartan-Eilenberg, Homological Algebra, p. 8.)

Set $B=j^*$ (Hom_R (R, Q)), then it is easy to see that this B is a Λ -submodule of the Λ -module Hom_R (I, Q).

M. NARITA

Let $Q = Rg_1 + Rg_2 + \cdots + Rg_s$, and let h_1, h_2, \cdots, h_s be *R*-homomorphism from *R* into *Q* defined by $h_i(1) = g_i, i = 1, 2, \cdots, s$. It is easy to see that $\bigcap_{i=1}^{s} \operatorname{Ker} j^*(h_i) = I \cap \operatorname{ann} Q$. Since $j^*(h_i) \in B$, and since we have assumed that $\operatorname{ann} Q = 0$, we can conclude immediately that the *B*-topology on *I* is the discrete topology. Therefore it is obvious that every element of $\operatorname{Hom}_R(I, Q)$ is a continuous mapping from *I* into *Q*. Since j^* is not a surjection, we have immediately the following strict inclusion: $B(=j^*(\operatorname{Hom}_R(R, Q))) \cong C_B \operatorname{Hom}_R(I, Q)$ (= $\operatorname{Hom}_R(I, Q)$). Thus we have proved (iv) \Rightarrow (i).

The proof of (i) \Rightarrow (ii) is quite similar to the proof which is given by Wu in his paper [1]. Suppose that Q is left R-injective, and let M be a left R-module. Let B be a Λ -submodule of the module Hom_R(M, Q), and let ρ be an arbitrary element of C_B Hom_R (M, Q). In order to complete the proof, we have only to show that ρ is contained in B.

Since we have assumed that ρ is a continuous mapping, there exist $\beta_1, \beta_2, \dots, \beta_n, \beta_i \in B, i=1, 2, \dots, n$ such that $\operatorname{Ker} \rho \supset \bigcap_{i=1}^n \operatorname{Ker} \beta_i$. Let $U = Q \oplus Q \oplus \dots \oplus Q$ be a direct sum of n copies of the module Q, and let $f: M \to U$ be the R-homomorphism defined by $f(x) = (\beta_1(x), \beta_2(x), \dots, \beta_n(x))$ for $x \in M$. Then it is evident that $\operatorname{Ker} f = \bigcap_{i=1}^n \operatorname{Ker} \beta_i$. Now let $j: \operatorname{Im} f \to U$ be the canonical injection, and let $g: M \to \operatorname{Im} f$ be the R-homomorphism such that $j \circ g = f$. Since $\operatorname{Ker} g \subset \operatorname{Ker} \rho$, and since g is an epimorphism, it is easy to see that there exists an R-homomorphism σ : $\operatorname{Im} f \to Q$ such that $\sigma \circ g = \rho$. From the assumption that Q is left R-injective, it is easily seen that the homomorphism σ can be extended to an R-homomorphism $\tau: U \to Q$ such that $\tau \circ f = \rho$.

Let $\tau_i: Q \to Q$ be the *i*-th component of $\tau: U \to Q$. Then we have $\tau(y) = \sum_{i=1}^{n} \tau_i(y)$ for $y \in U$. Using above results, we have immediately the following equation for any $x \in M$:

$$o(x) = \tau \circ f(x) = \sum_{i=1}^{n} \tau_i(\beta_i(x)).$$

This equation shows that $\rho = \sum_{i=1}^{n} \tau_i \circ \beta_i$.

Since we have assumed that B is a Λ -submodule of the module $\operatorname{Hom}_{R}(M, Q)$, and since $\tau_{i} \in \Lambda$, $i=1, 2, \dots, n$, it is obvious that $\rho \in B$. Thus we have proved (i) \Rightarrow (ii).

2. The case ann $Q \neq 0$. In case ann $Q \neq 0$, the conclusion of the theorem 2 above stated does not always hold. To make clear this situation, we shall give an example of a ring R and an Rmodule Q with the following properties: (a) ann $Q \neq 0$, (b) Q is not R-injective, (c) $B = C_B \operatorname{Hom}_R(M, Q)$ for any R-module M and for any Λ -submodule B of the module $\operatorname{Hom}_R(M, Q)$.

Example. Let R be a primary local ring with the maximal

8

No. 1]

ideal m=(u), where $u^2=0$. (a) Then it is evident that $\operatorname{ann} m=m\neq 0$. (b) It is also easy to see that m is not injective as an *R*-module. (Actually it is easy to see that the essential injective envelope of the *R*-module m is *R* itself.)

(c) Hereafter the ideal m will be understood as a topological space with the discrete topology. Let F = R/m be the residue field, and $f: R \rightarrow F$ the canonical epimorphism. Let M be an R-module (not necessarily finitely generated). Since ann m=m, it is easy to see that $\operatorname{Hom}_R(M, m)$ can be regarded as an F-module (i.e. a vector space over F of finite or infinite dimension). It is also obvious that the ring $\operatorname{Hom}_R(m, m)$ is isomorphic to F.

Let B be an F-submodule of the F-module $\operatorname{Hom}_{R}(M, \mathfrak{m})$. Let $C_{B} \operatorname{Hom}_{R}(M, \mathfrak{m})$ be the set consisting of all continuous homomorphisms from the module M with the B-topology into \mathfrak{m} with the discrete topology. Let ρ be an arbitrary element of $C_{B} \operatorname{Hom}_{R}(M, \mathfrak{m})$. For the present purpose, it will be sufficient to prove that $\rho \in B$.

By the definition of the *B*-topology, there exist $\beta_1, \beta_2, \dots, \beta_n$, $\beta_i \in B, i=1, 2, \dots, n$ such that $\operatorname{Ker} \rho \supset \bigcap_{i=1}^n \operatorname{Ker} \beta_i$. Since Hom_R (M, m) is a vector space, we can choose elements $\beta_{i_1}, \beta_{i_2}, \dots, \beta_{i_k}$ from $\beta_1, \beta_2, \dots, \beta_n$ in such a way that these $\beta_{i_1}, \beta_{i_2}, \dots, \beta_{i_k}$ are linearly independent over *F* and any of $\beta_1, \beta_2, \dots, \beta_n$ can be expressed as a linear combination of $\beta_{i_1}, \beta_{i_2}, \dots, \beta_{i_k}$. Then it is easy to see that $\bigcap_{i=1}^n \operatorname{Ker} \beta_i = \bigcap_{i=1}^k \operatorname{Ker} \beta_{i_i}$. Therefore it is evident that we can assume without any loss of generality that $\beta_1, \beta_2, \dots, \beta_n$ are linearly independent over *F*.

Let $\beta_i(a_{\mu}) = a_{i\mu}u$, where $\{a_{\mu}\}_{\mu\in\Gamma}$ be an *R*-basis (not necessarily minimal) of the *R*-module *M*. Let $\bar{a}_{i\mu} = f(a_{i\mu})$, where *f* is the canonical epimorphism from the ring *R* onto the field *F*. Let *W* be the linear subspace spanned by all column vectors of the type

$$\begin{bmatrix} \bar{a}_{1\mu} \\ \bar{a}_{2\mu} \\ \vdots \\ \bar{a}_{n\mu} \end{bmatrix}, \mu \in \Gamma.$$

Then it is self-evident that dim $W \leq n$, and it is easy to see that dim W is just equal to n. Now let b_1, b_2, \dots, b_n be elements chosen from $\{a_\mu\}_{\mu\in\Gamma}$ in such a way that det $(\overline{b}_{ij})\neq 0$ where $\beta_i(b_j)=b_{ij}u, \overline{b}_{ij}$ $=f(b_{ij})$. Let (\overline{c}_{ij}) be the inverse matrix of the matrix (\overline{b}_{ij}) , and c_{ij} be a representative of each of \overline{c}_{ij} such that $f(c_{ij})=\overline{c}_{ij}, i=1, 2, \dots, n$, $j=1, 2, \dots, n$. Let $c_j=\sum_{k=1}^n c_{kj}b_k$, then we have $\beta_i(c_j)=\sum_{k=1}^n c_{kj}\beta_i$ $(b_k)=\sum_{k=1}^n c_{kj}b_{ik}u$. From the definition of \overline{c}_{kj} , we have $\sum_{k=1}^n \overline{b}_{ik}\overline{c}_{kj}$ $=\delta_{ij}$. Therefore we have immediately $\beta_i(c_j)=\delta_{ij}u$ since $u^2=0$.

Let $d_{\tau} = a_{\tau} - \sum_{j=1}^{n} a_{j\tau} c_{j}, \tau \in \Gamma$. Then it is easy to see that c_{1}, c_{2} ,

 \cdots , c_n and $\{d_r\}_{r \in \Gamma}$ generate the *R*-module *M*.

From the definition of $\{d_{\tau}\}_{\tau \in \Gamma}$, we have immediately

 $\beta_i(d_\tau) = \beta_i(a_\tau) - \sum_{j=1}^n a_{j\tau}\beta_i(c_j) = a_{i\tau}u - a_{i\tau}u = 0.$

This implies that $d_{\tau} \in \bigcap_{i=1}^{n} \operatorname{Ker} \beta_{i} \subset \operatorname{Ker} \rho$.

Let $\rho(c_i) = h_i u, i = 1, 2, \dots, n$, and let $\sigma = \rho - \sum_{j=1}^n h_j \beta_j$. Then we have $\sigma(c_i) = \rho(c_i) - \sum_{j=1}^n h_j \beta_j(c_i) = h_i u - h_i u = 0, i = 1, 2, \dots, n$. On the other hand, it is obvious that $\sigma(d_\tau) = 0, \tau \in \Gamma$, since $d_\tau \in \text{Ker } \rho$ and $d_\tau \in \text{Ker } \beta_i, i = 1, 2, \dots, n$. Since c_1, c_2, \dots, c_n and $\{d_\tau\}_{\tau \in \Gamma}$ make an *R*-basis of the *R*-module *M*, we have immediately $\sigma = 0$, i.e. ρ $= \sum_{j=1}^n h_j \beta_j$. Thus we have proved that ρ belongs to *B*.

References

- [1] L. E. T. Wu: A characterization of self-injective rings. Illinois Journal of Mathematics, 10, 61-65 (1966).
- [2] S. U. Chase: Function topologies on Abelian groups. Illinois Journal of Mathematics, 7, 593-608 (1963),