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20. A Proof for the Imbedding Theorems
for Sobolev Spaces

By Tosinobu MURAMATU
Research Institute for Mathematical Sciences, Kyoto University, Kyoto

(Comm. by Zyoiti SUETUNA, M.J.A., Feb, 13, 1967)

The purpose of the present paper is to show that we can give
another proof for the imbedding theorems for Sobolev spaces, without
making use of the customary estimate of multi-dimensional potentials
([11-[3], [61-[9D).

Theorem. Let 2 be a domain in the n-dimensional Euclidean
space R". Assume that there exists a constant R, a cube Q and
an open covering {2;} of 2 such that the diameter of 2; is mot
greater than R, and Q; is star-shaped with respect to a cube Q;
congruent to Q. In cases m>0, assume that for each point x in
Q2 the mumber of 2, containing x is not greater than a comstant
N. Then there holds the imbedding:

Whe(Q)— Whaer—m(Q)
of l—%+%—kgo, 1<p=Zq<oo and if either one of the conditions

(i) p<q, m>0, (ii) k is not an integer, m=0, and (iii) m=n, is
satisfied.
For functions f(x) on 2, we define
“f”m)m—nl(g) 28251)) “ f(xly oy Ty x(")) “L?(Dz(ﬂ))’

where 2™ = (2,4, ++, &,) and 2 ., is the set of points (z,, ---, 2,,)
such that (2, «--, Z., 2™) € 2, and for fe C~(Q)
15 hyiopnmer =117l w-mior 33117 llzmin-mey (¢ i an integer)®
or
] f(x)— ()
lai=tall |@x—y |t
(t=[1l]+0o,0<0<])
Here the spaces Wh»"™(Q) are defined as the completions of
subsets of C=(2) consisting of functions f with || f|l;1pnm<co.
Whr=Whet Ct=Whrn,
In the following we assume that 2 is bounded and is starshaped
with respect to a cube. It is easy to extend the results for general

domains.
Let 2 be a bounded star-shaped domain with respect to a cube

“ f”wlvpm—mw)= ” f”w[l]mm—-m(n)+ Lprtn—2m(ax0)

*)  fla)(z) denotes the a-th derivative of f(z).
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@ and choose ¢(x) € C=(R") such that Sgo(x)dw:l and ¢(z) is identically

equal to zero outside Q. For f(x)e C~(2), we have by Taylor’s
formula,
f@= 5L po@ i 3 | O porga—app-dt.

Multlplymg by go(z) and integrating W1th respect to z, we have
f@= 3 S:t‘—‘dts %(x — 2 o(2) f @+ )z —z))d2

+ 3 [euae -2z, (1)

where ¢.(2) is a linear combination of derivatives of ¢(z). In the
same way, we have

@)= 2 [ve, Do) @+ ta—a) — f@+ tw—o))dzdw

+|e@ s@ez, (2)
where (z, 2)=n¢(2)+ g(z i — ;) g%g(z).

Our proof of the Theorem is based on these formulas and the
following

Lemma 1. Let Q be bounded and star-shaped with respect to
Q. Set w=2NS where S is a (n—m)-dimensional subspace of
R" and let K(x,2) (x€S,ze R*) be a C’-function having support
contained in SxQ. For any function f such that for any compact
subset B in w,

sup sup S | fx+t(z—x)) | dz<co

Z€B 0<is
( for convenience, we wzll say that f(x) is of the class K(w) if
f(x) has this property), we define

F(a)= S:n(t)dts F@+tz—a)K(z, 2)dz

where 0=<|7(t)|<t',0<T<1, and 1>0. Assume that 1=1—""+
D
%—kgo, h>k,1<p=<g<oco and assume further one of the following

conditions:

(i) p<q,r>0, and (ii) k is not an integer, k<l, r=0, (iii) 2>0.
Then

” F(x) ”Wk'qm—-M—r(m) é CT} ” f”zp(n) ( 3 )

holds for any fe L*(2)N K(w), where C is a constant independent
of f and T.

Proof of the Theorem. Note that the theorem is proved by
showing the estimate

| fllwkan-maySCll fllgrsa, ~ (foy any fe C=(@)n W"CQ).
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If | is an integer, then we have this estimate by (1) and
Lemma 1. Next consider the case in which 0<k<l<1l. The first
term on the right side of (2) can be written in the form

F(x)=S:t"“dtSS Fla+tz—0), z+t(w—2) K@, 2, w)dzdw,

where f(x, y)={f@)— fW)} |z —y ™, K, 2, w)=y(, 2)p(w) |z2—w|*,
p=l+%. By Lemma 1, choosing S={(z, «) | € R"}, we have

“ F ”thm—oM(n)éc ”f“;p(nxﬂ)‘
Thus the theorem is proved in this case. Consider now the case
in which {=[l]+0,0<0<1,k=[l]. By the result just proved we
have || £ || kqn-m=C || £ || 1., for any @ with |a|=[1]. Therefore,
the theorem is proved in this case also. Choosing a suitable r, and
considering two imbeddings W'?»— Wtlr gnd WU."— Wher—™ we can
prove the theorem in general cases.
To prove Lemma 1 we will use the following.

Lemma 2. Let 2, w, (), Q, T be as in Lemma 1. Assume that

(i) y=l—%+%;0, p<q,r>0, or (ii) #>0. Then for any
Junction fe L*(Q)N K(w)

SCT*[| fllspeay  (4)

T
\\mae] | f@rtie—onias|
Proof. We may suppose that S={(«’, 0)|2’' € R*™}. By Holder’s
inequality we have
§q| f@+te—)| dnglso,dz’(S | F @ + (2 —a), t2") |vdz")""

<Cit> S g’ +t(z' —a"))dz,
where '=SNQ, Q. ={x"| %x’, 2" eqQ}), 2, ={z"| (@, x")e2 and
g(@")=|| f(a’, 2") ”Lp(nz,)'
Thus it is sufficient to consider the case where m=0 and w=2.
Case (i). We may suppose that 1=0, T=1, and 7(t)=¢""'. By
Holder’s inequality we have

[ 7@ +te—aydasc a(| |f@rte—oprar)”
<Cit-"% Lg(x’ +t(z' —a'))dz’,

where 2z=(2,2"),Zc¢R",2"cR*", and g(@)=|1(", 2")|lzac0,y
Therefore, it is sufficient to consider the case r=n. Put u=z
+t(z—x), s=|x—2z|, then we have

Qu’+t(z'—2z’)

S:t‘—‘dtgcl F@+t(z—a)) |de< c,§:§a| F) || w—x [-*Hs* - duds
=G| 17@| lu—z-"du.
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Applying Riesz’s inequality ([4], [5]) to the right side of this
inequality, we have the estimate (4).

Case (ii). It is sufficient to consider two cases; (a) r=u, p=gq,
and (b) »=0. By Holder’s inequality we have

S:p(t)dtsel f@+tz—2))|de< Clgjt‘*ldt(sql F@+tz—2)) |»dz)”’

T
<C[ t50E  Fllcor

so that the estimate is verified in case (b). Finally consider case (a).
By virtue of Holder’s inequality and Jessen’s inequality, we have

|\ eyt | | £(o+te—a)dz| L.

T ip
< ClSo t“‘dt(sngq | @+ tz—m) |? dzdx)
Set u=2+t(x—2), v=r—2. Then we have

]| f@rta—anypdnde<( | | @)1 qudvC,l £ ey

Thus we have the estimate (4) in this case.

Proof of Lemma 1. We may suppose that S={(%, 0)|Zc R* ™}
and 7(t)=t""'. The estimate ||F || nm—rw=CT*||fll;nq is an
immediate consequence of Lemma 2, so that Lemma 1 is proved
when £=0.

Case 0<k<1,r>0. Set

F@,u)=|__ ot ap-dt, o, 9)=| | fa+ta—o)|dz,
G, 0)=(_ t=at| [+ te—0)K(w,0)~ f+ - K@, )z
Then we have

| F(z)—F(y) | C{F (x, )+ F(y, )} +G(, y). (5)
It is easily checked that
F(w,9)S|2-y | G@), G@)= | o= 0(¢, w)at.
Thus we have

Sm(,u) I x—y Ir+kq d?l =CsG(w) Stslz—-vls Ix—y I"H’ dtdy =CSG(£D)

where y=',¥"),¥ e R", and o )={¥|,¥y")cw}. It follows
from this estimate and Lemma 2 that

F(z, y) =CT*||f ”m(n)’ (6)

H x— (rl)+k
I 4 I L92(n—m—r)(wxw)

Now consider G(z,y). By the identity
[ra+te—)K @, D= f@+te—anK(y, 2+
and the inequality

1

= (@—v))dz
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‘K(a:, z)—K(y,z+ (x y))’<M|x—yi+—',

tk+e
and 0<e<1—k, h—k, we have G(x, y)<C.H(x, y)+ H(y, x) where
H(z, y)= S $1-E-1 | 3 —y [, @)dt.
Zlz—yl

By Jessen’s inequality we have
H(z, y)* ,)""
(Sm(v") |x—y [T o

r
és tl-k—:—l@(t, x)(g
0 lz—y| st
Therefore, by Lemma 2 we have

G(x, y) <CT* || £l ooy (1)

” Ix Y |('/q)+k LO2(R—m—7) (o X w)

It follows from (5), (6), and (7) that || F() [|;x.qn-m—rcoy=CT* || £l 1ncay-
Case 0<k<1,r=0. We may assume that -, By Holder’s
D

lz—y |¢q-rdy’)1/th§C,G(:v).

inequality we have

F@ <G| 00 f lw<Cle=y | e (8)
and
G, WSC|_ 15—y 8t FllpSCol 2= 1l (9)

By (5), ®), and (9) we have M’"—(,f)—ﬁ%’ﬂ <Cl Fllrear

Case k=1. Set
F.(o)= Sjﬂ(t)dtg F@+tz—a)K(z, 2)dz

={"nyt—dt| Fak (2, 2+ =% du.
| morae] sk (o042 72)

Letting ¢—0 after differentiating and changing the variables of
integration we have

D:F@=3(5)| m®dtl £+ te—a)Kutw, )z,

where 74(t) =7(t)¢~'#'(t —1)'*' and Kg(x,2)=D;?DfK(x,z). This formula
and Lemma 1 in the case already proved give the estimate (8) in
this case.
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