20. A Proof for the Imbedding Theorems for Sobolev Spaces

By Tosinobu Muramatu
Research Institute for Mathematical Sciences, Kyoto University, Kyoto

(Comm. by Zyoiti Suetuna, m.J.A., Feb. 13, 1967)
The purpose of the present paper is to show that we can give another proof for the imbedding theorems for Sobolev spaces, without making use of the customary estimate of multi-dimensional potentials ([1]-[3], [6]-[9]).

Theorem. Let Ω be a domain in the n-dimensional Euclidean space \boldsymbol{R}^{n}. Assume that there exists a constant R, a cube Q and an open covering $\left\{\Omega_{j}\right\}$ of Ω such that the diameter of Ω_{j} is not greater than R, and Ω_{j} is star-shaped with respect to a cube Q_{j} congruent to Q. In cases $m>0$, assume that for each point x in Ω the number of Ω_{j} containing x is not greater than a constant N. Then there holds the imbedding:

$$
W^{l, p}(\Omega) \rightarrow W^{k, q, n-m}(\Omega)
$$

if $l-\frac{n}{p}+\frac{m}{q}-k \geqq 0,1<p \leqq q<\infty$ and if either one of the conditions
(i) $p<q, m>0$, (ii) k is not an integer, $m=0$, and (iii) $m=n$, is satisfied.

For functions $f(x)$ on Ω, we define

$$
\|f\|_{L^{p, n-m(\Omega)}}=\sup _{x^{(m)}}\left\|f\left(x_{1}, \cdots, x_{m}, x^{(m)}\right)\right\|_{L^{p}\left(o_{x}(m)\right.},
$$

where $x^{(m)}=\left(x_{m+1}, \cdots, x_{n}\right)$ and $\Omega_{x^{(m)}}$ is the set of points $\left(x_{1}, \cdots, x_{m}\right)$ such that $\left(x_{1}, \cdots, x_{m}, x^{(m)}\right) \in \Omega$, and for $f \in C^{\infty}(\Omega)$

$$
\|f\|_{W^{l}, p, n-m(\Omega)}=\|f\|_{L^{p n-m}(\Omega)}+\sum_{|\alpha|=l}\left\|f^{(\alpha)}\right\|_{L^{p, n-m(\Omega)}} \quad(l \text { is an integer. })^{*)}
$$

or

$$
\begin{array}{r}
\|f\|_{W^{l, p, n-m(\Omega)}}=\|f\|_{W[l], p, n-m(\Omega)}+\sum_{|\alpha|=[l]}\left\|\frac{f^{(\alpha)}(x)-f^{(\alpha)}(y)}{|x-y|^{(m / p)+\sigma}}\right\|_{L^{p, 2 n-2 m(\Omega \times \rho)}} \\
(l=[l]+\sigma, 0<\sigma<1)
\end{array}
$$

Here the spaces $W^{l, p, n-m}(\Omega)$ are defined as the completions of subsets of $C^{\infty}(\Omega)$ consisting of functions f with $\|f\|_{w^{l}, p, n-m}<\infty$. $W^{l, p}=W^{l, p, 0}, C^{l}=W^{l, p, n}$.

In the following we assume that Ω is bounded and is starshaped with respect to a cube. It is easy to extend the results for general domains.

Let Ω be a bounded star-shaped domain with respect to a cube

[^0]Q and choose $\varphi(x) \in C^{\infty}\left(R^{n}\right)$ such that $\int \varphi(x) d x=1$ and $\varphi(x)$ is identically equal to zero outside Q. For $f(x) \in C^{\infty}(\Omega)$, we have by Taylor's formula,
$$
f(x)=\sum_{|\alpha|<l} \frac{(x-z)^{\alpha}}{\alpha!} f^{(\alpha)}(z)+l \sum_{|\alpha|=l} \int_{0}^{1} \frac{(x-z)^{\alpha}}{\alpha!} f^{(\alpha)}(x+t(z-x)) t^{l-1} d t .
$$

Multiplying by $\varphi(z)$ and integrating with respect to z, we have

$$
\begin{align*}
f(x)= & \left.\sum_{|\alpha|=l} \int_{0}^{1} t^{l-1} d t \int \frac{l}{\alpha!}(x-z)^{\alpha} \varphi(z) f^{(\alpha)}(x+t)(z-x)\right) d z \\
& +\sum_{|\alpha|<l} \int \varphi_{\alpha}(z)(x-z)^{\alpha} f(z) d z, \tag{1}
\end{align*}
$$

where $\varphi_{\alpha}(z)$ is a linear combination of derivatives of $\varphi(z)$. In the same way, we have

$$
\begin{align*}
f(x)=\int_{0}^{1} \frac{d t}{t} \iint \psi(x, z) \varphi(w)\{f(x+t(z-x)) & -f(x+t(w-x))\} d z d w \\
& +\int \varphi(z) f(z) d z \tag{2}
\end{align*}
$$

where $\psi(x, z)=n \varphi(z)+\sum_{j=1}^{n}\left(z_{j}-x_{j}\right) \frac{\partial \varphi}{\partial z_{j}}(z)$.
Our proof of the Theorem is based on these formulas and the following

Lemma 1. Let Ω be bounded and star-shaped with respect to Q. Set $w=\Omega \cap S$ where S is a $(n-m)$-dimensional subspace of \boldsymbol{R}^{n} and let $K(x, z)\left(x \in S, z \in \boldsymbol{R}^{n}\right)$ be a C^{n}-function having support contained in $S \times Q$. For any function f such that for any compact subset B in w,

$$
\sup _{x \in B} \sup _{0<t \leq 1} \int_{Q}|f(x+t(z-x))| d z<\infty
$$

(for convenience, we will say that $f(x)$ is of the class $K(\omega)$ if $f(x)$ has this property), we define

$$
F(x)=\int_{0}^{T} \eta(t) d t \int f(x+t(z-x)) K(x, z) d z
$$

where $0 \leqq|\eta(t)| \leqq t^{l-1}, 0 \leqq T \leqq 1$, and $l>0$. Assume that $\lambda=l-\frac{n}{p}+$ $\frac{r}{q}-k \geqq 0, h>k, 1<p \leqq q<\infty$ and assume further one of the following conditions:
(i) $p<q, r>0$, and (ii) k is not an integer, $k<l, r=0$, (iii) $\lambda>0$. Then

$$
\begin{equation*}
\|F(x)\|_{W^{k, q, n-m-r_{(\omega)}}} \leqq C T^{\lambda}\|f\|_{L^{p}(\Omega)} \tag{3}
\end{equation*}
$$

holds for any $f \in L^{p}(\Omega) \cap K(\omega)$, where C is a constant independent of f and T.

Proof of the Theorem. Note that the theorem is proved by showing the estimate

$$
\left.\|f\|_{W^{k, q, n-m(\Omega)}} \leqq C\|f\|_{W^{l, p(\Omega)}} \quad \text { (foy any } f \in C^{\infty}(\Omega) \cap W^{l, p} C \Omega\right) .
$$

If l is an integer, then we have this estimate by (1) and Lemma 1. Next consider the case in which $0 \leqq k<l<1$. The first term on the right side of (2) can be written in the form

$$
F(x)=\int_{0}^{1} t^{\mu-1} d t \iint \tilde{f}(x+t(z-x), x+t(w-x)) K(x, z, w) d z d w
$$

where $\tilde{f}(x, y)=\{f(x)-f(y)\}|x-y|^{-\mu}, K(x, z, w)=\psi(x, z) \varphi(w)|z-w|^{\mu}$, $\mu=l+\frac{n}{p}$. By Lemma 1, choosing $S=\left\{(x, x) \mid x \in \boldsymbol{R}^{n}\right\}$, we have

$$
\|F\|_{W^{k, q, n-m(\Omega)}} \leqq C\|\tilde{f}\|_{L^{p(\Omega \times \Omega)}}
$$

Thus the theorem is proved in this case. Consider now the case in which $l=[l]+\sigma, 0<\sigma<1, k \geqq[l]$. By the result just proved we have $\left\|f^{(\alpha)}\right\|_{w^{k}, q, n-m} \leqq C\left\|f^{(\alpha)}\right\|_{w_{l}, p}$ for any α with $|\alpha|=[l]$. Therefore, the theorem is proved in this case also. Choosing a suitable r, and considering two imbeddings $W^{l, p} \rightarrow W^{[l], r}$ and $W^{[l], r} \rightarrow W^{k, q, n-m}$, we can prove the theorem in general cases.

To prove Lemma 1 we will use the following.
Lemma 2. Let $\Omega, \omega, \eta(t), Q, T$ be as in Lemma 1. Assume that
(i) $\mu=l-\frac{n}{p}+\frac{r}{q} \geqq 0, p<q, r>0$, or (ii) $\mu>0$. Then for any function $f \in L^{p}(\Omega) \cap K(\omega)$

$$
\begin{equation*}
\left\|\int_{0}^{T} \eta(t) d t \int_{Q}|f(x+t(z-x))| d z\right\|_{L^{q}, \boldsymbol{n - m - r _ { (\omega) }}} \leqq C T^{\mu}\|f\|_{L^{p}(\Omega)} \tag{4}
\end{equation*}
$$

Proof. We may suppose that $S=\left\{\left(x^{\prime}, 0\right) \mid x^{\prime} \in \boldsymbol{R}^{n-m}\right\}$. By Hölder's inequality we have

$$
\begin{aligned}
\int_{Q}|f(x+t(z-x))| d z & \leqq C_{1} \int_{Q^{\prime}} d z^{\prime}\left(\int_{\left.Q_{x^{\prime}+t\left(z^{\prime}-x^{\prime}\right.}\right)}\left|f\left(x^{\prime}+t\left(z^{\prime}-x^{\prime}\right), t z^{\prime \prime}\right)\right|^{p} d z^{\prime \prime}\right)^{1 / p} \\
& \leqq C_{1} t^{-\frac{m}{p}} \int_{Q^{\prime}} g\left(x^{\prime}+t\left(z^{\prime}-x^{\prime}\right)\right) d z^{\prime}
\end{aligned}
$$

where $\quad Q^{\prime}=S \cap Q, Q_{x^{\prime}}=\left\{x^{\prime \prime} \mid\left(x^{\prime}, x^{\prime \prime}\right) \in Q\right\}, \Omega_{x^{\prime}}=\left\{x^{\prime \prime} \mid\left(x^{\prime}, x^{\prime \prime}\right) \in \Omega\right\} \quad$ and $g\left(x^{\prime}\right)=\left\|f\left(x^{\prime}, x^{\prime \prime}\right)\right\|_{L^{p\left(\Omega_{x}\right)}}$.

Thus it is sufficient to consider the case where $m=0$ and $\omega=\Omega$.
Case (i). We may suppose that $\lambda=0, T=1$, and $\eta(t)=t^{l-1}$. By Hölder's inequality we have

$$
\begin{aligned}
\int_{Q}|f(x+t(z-x))| d z & \leqq C_{1} \int_{Q^{\prime}} d z^{\prime}\left(\int_{\mathbf{Q}_{z^{\prime}}}|f(x+t(z-x))|^{p} d z^{\prime \prime}\right)^{1 / p} \\
& \leqq C_{1} t-\frac{n-r}{p} \int_{Q^{\prime}} g\left(x^{\prime}+t\left(z^{\prime}-x^{\prime}\right)\right) d z^{\prime}
\end{aligned}
$$

where $\quad z=\left(z^{\prime}, z^{\prime \prime}\right), z^{\prime} \in \boldsymbol{R}^{r}, z^{\prime \prime} \in \boldsymbol{R}^{n-r}, \quad$ and $\quad g\left(x^{\prime}\right)=\left\|f\left(x^{\prime}, x^{\prime \prime}\right)\right\|_{\boldsymbol{z}^{p}\left(o_{x^{\prime}}\right)}$. Therefore, it is sufficient to consider the case $r=n$. Put $u=x$ $+t(z-x), s=|x-z|$, then we have

$$
\begin{aligned}
\int_{0}^{1} t^{l-1} d t \int_{Q}|f(x+t(z-x))| d z & \leqq C_{2} \int_{0}^{R} \int_{Q}|f(u)||u-x|^{-n+l} s^{n-l-1} d u d s \\
& \leqq C_{3} \int_{\Omega}|f(u)||u-x|^{l-n} d u .
\end{aligned}
$$

Applying Riesz's inequality ([4], [5]) to the right side of this inequality, we have the estimate (4).

Case (ii). It is sufficient to consider two cases; (a) $r=n, p=q$, and (b) $r=0$. By Hölder's inequality we have

$$
\begin{aligned}
\int_{0}^{T} \eta(t) d t \int_{Q}|f(x+t(z-x))| d z & \leqq C_{1} \int_{0}^{T} t^{l-1} d t\left(\int_{Q}|f(x+t(z-x))|^{p} d z\right)^{1 / p} \\
& \leqq C_{1} \int_{0}^{T} t^{l-\frac{n}{p}-1} d t\|f\|_{L^{p}(\rho)}
\end{aligned}
$$

so that the estimate is verified in case (b). Finally consider case (a). By virtue of Hölder's inequality and Jessen's inequality, we have

$$
\begin{aligned}
\| \int_{0}^{T} \eta(t) d t \int_{Q} \mid & f(x+t(z-x)) d z \mid \|_{L^{p}(\rho)} \\
& \leqq C_{1} \int_{0}^{T} t^{l-1} d t\left(\int_{Q} \int_{Q}|f(x+t(z-x))|^{p} d z d x\right)^{1 / p}
\end{aligned}
$$

Set $u=x+t(x-z), v=x-z$. Then we have

$$
\int_{\Omega} \int_{Q}|f(x+t(z-x))|^{p} d x d z \leqq \int_{\Omega} \int_{Q-Q}|f(u)|^{p} d u d v \leqq C_{2}\|f\|_{L p(o)^{\bullet}}^{p}
$$

Thus we have the estimate (4) in this case.
Proof of Lemma 1. We may suppose that $S=\left\{(\hat{x}, 0) \mid \hat{x} \in R^{n-m}\right\}$ and $\eta(t)=t^{l-1}$. The estimate $\|F\|_{L^{q}, n-m-r(\omega)} \leqq C T^{\mu}\|f\|_{L^{p(\rho)}}$ is an immediate consequence of Lemma 2, so that Lemma 1 is proved when $k=0$.

Case $0<k<1, r>0$. Set

$$
\begin{aligned}
& F(x, y)=\int_{t \leq|x-y|} \Phi(t, x) t^{l-1} d t, \Phi(t, x)=\int_{Q}|f(x+t(z-x))| d z \\
& G(x, y)=\int_{t \geq|x-y|} t^{l-1} d t\left|\int\{f(x+t(z-x)) K(x, z)-f(y+t(z-y)) K(y, z)\} d z\right|
\end{aligned}
$$

Then we have

$$
\begin{equation*}
|F(x)-F(y)| \leqq C_{0}\{F(x, y)+F(y, x)\}+G(x, y) \tag{5}
\end{equation*}
$$

It is easily checked that

$$
F(x, y) \leqq|x-y|^{k} G(x), G(x)=\int_{0}^{T} t^{l-k-1} \Phi(t, x) d t
$$

Thus we have

$$
\int_{\omega\left(y^{\prime \prime}\right)} \frac{F(x, y)^{q}}{|x-y|^{r+k q}} d y^{\prime} \leqq C_{2} G(x)^{q-1} \int_{t \leqq|x-y|} \frac{\Phi(t, x) t^{l-1}}{|x-y|^{r+k}} d t d y^{\prime} \leqq C_{3} G(x)^{q}
$$

where $y=\left(y^{\prime}, y^{\prime \prime}\right), y^{\prime} \in \boldsymbol{R}^{r}$, and $\omega\left(y^{\prime \prime}\right)=\left\{y^{\prime} \mid\left(y^{\prime}, y^{\prime \prime}\right) \in \omega\right\}$. It follows from this estimate and Lemma 2 that

$$
\begin{equation*}
\left\|\frac{F(x, y)}{|x-y|^{(r / q)+k}}\right\|_{L^{q}, 2(n-m-r)(\omega \times \omega)} \leqq C T^{\lambda}\|f\|_{L^{p(\rho)}} . \tag{6}
\end{equation*}
$$

Now consider $G(x, y)$. By the identity

$$
\int f(y+t(z-y)) K(y, z) d z=\int f(x+t(z-x)) K\left(y, z+\frac{1-t}{t}(x-y)\right) d z
$$

and the inequality

$$
\left|K(x, z)-K\left(y, z+\frac{1-t}{t}(x-y)\right)\right| \leqq M \frac{|x-y|^{k+\varepsilon}}{t^{k+\varepsilon}},
$$

and $0<\varepsilon<1-k, h-k$, we have $G(x, y) \leqq C_{1} H(x, y)+H(y, x)$ where

$$
H(x, y)=\int_{t \geq|x-y|} t^{l-k-1}|x-y|^{k+\varepsilon} \Phi(t, x) d t
$$

By Jessen's inequality we have

$$
\begin{aligned}
& \left(\int_{\omega\left(y^{\prime \prime}\right)} \frac{H(x, y)^{q}}{|x-y|^{++k q}} d y^{\prime}\right)^{1 / q} \\
& \quad \leqq \int_{0}^{T} t^{l-k-\varepsilon-1} \Phi(t, x)\left(\int_{|x-y| \leq t}|x-y|^{\varepsilon q-r} d y^{\prime}\right)^{1 / q} d t \leqq C_{2} G(x) .
\end{aligned}
$$

Therefore, by Lemma 2 we have

$$
\begin{equation*}
\left\|\frac{G(x, y)}{|x-y|^{r / q / q) k}}\right\|_{L r, 2(n-m-r)(\omega \times \omega)} \leqq C T^{\lambda}\|f\|_{L^{p}(())} . \tag{7}
\end{equation*}
$$

It follows from (5), (6), and (7) that $\|F(x)\|_{W^{k}, q, n-m-r_{(\omega)}} \leqq C T^{2}\|f\|_{L^{p}(\rho)}$.
Case $0<k<1, r=0$. We may assume that $l-\frac{n}{p}=k$. By Hölder's inequality we have

$$
\begin{equation*}
F(x, y) \leqq C_{1} \int_{t \leq|x-y|} t^{k-1} d t\|f\|_{L p(\rho)} \leqq C_{2}|x-y|^{k}\|f\|_{L p(\rho)} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
G(x, y) \leqq C_{1} \int_{t \geq|x-y|}|x-y|^{k+e_{T}-\varepsilon-1} d t\|f\|_{L P(o)} \leqq C_{3}|x-y|^{k}\|f\|_{L p(Q)} . \tag{9}
\end{equation*}
$$

By (5), (8), and (9) we have $\frac{|F(x)-F(y)|}{|x-y|^{k}} \leqq C\|f\|_{L^{p}(\rho)}$.
Case $k \geqq 1$. Set

$$
\begin{aligned}
F_{t}(x) & =\int_{t}^{T} \eta(t) d t \int f(x+t(z-x)) K(x, z) d z \\
& =\int_{t}^{T} \eta(t) t^{-n} d t \int f(u) K\left(x, x+\frac{u-x}{t}\right) d u .
\end{aligned}
$$

Letting $\varepsilon \rightarrow 0$ after differentiating and changing the variables of integration we have

$$
D_{x}^{\alpha} F(x)=\sum_{\alpha \equiv \beta}\binom{\alpha}{\beta} \int_{0}^{T} \eta_{\beta}(t) d t \int_{j} f(x+t(z-x)) K_{\beta}(x, z) d z,
$$

where $\eta_{\beta}(t)=\eta(t) t^{-|\beta|}(t-1)^{|\beta|}$ and $K_{\beta}(x, z)=D_{z}^{\alpha-\beta} D_{z}^{\beta} K(x, z)$. This formula and Lemma 1 in the case already proved give the estimate (3) in this case.

References

[1] Besov, O. V.: On a certain family of functional spaces. Imbedding and continuation theorem (Russian). D. A. N. SSSR, 126 (6), 1163-1165 (1959).
[2] Gagliardo, E.: Proprietà di alcune classi di funzioni in più variabili. Ricerche di Mat., 7, 102-137 (1958).
[3] Nikolskii, S. M.: On imbedding, continuation and approximation theorems for differential functions of several variables (Russian). Usp. Mat., 16 (5), 63-114 (1961).
[4] Du Plessis, N.: Some theorems about the Riesz fractional integral. Trans. Amer. Math. Soc., 80, 124-134 (1955).
[5] Riesz, F.: Sur une inégalité. J. London Math. Soc., 5, 162-168 (1930).
[6] Slobodeskii, L. I.: Spaces of Sobolev of fractional order and their application to boundary problems for partial differential equations (Russian). D. A.N. SSSR, 118(2), 243-246 (1958).
[7] Sobolev, S. L.: On a theorem of functional analysis (Russian). Mat. Sb., 4, (46), no. 3, 471-497 (1938).
[8] Sobolev, S. L.: Some Applications of Functional Analysis to Mathematical Physics. Leningrad (1950) (Russian).
[9] Uspenskii, S. V.: Imbedding theorem for classes of S. L. Sobolev of franctional order. D. A. N. SSSR, 132(5), 992-993 (1960).

[^0]: *) $f^{(\alpha)}(x)$ denotes the α-th derivative of $f(x)$.

