
No. 2] Prec. Japan Aead., .43 (1967) 87

20. A Proof for the Imbedding Theorems
for Sobolev Spaces

By Tosinobu MURAMATU
Research Institute for Mathematical Sciences, Kyoto University, Kyoto

(Comm. by Zyoiti SU.TUS, M.J.A., Feb. 13, 1967)

The purpose of the present paper is to show that we can give
another proof for the imbedding theorems for Sobolev spaces, without
making use of the customary estimate of multi-dimensional potentials
(I-I-I-E3ZI, E6-I-E9ZI).

Theorem. Let 12 be a domain in th n-dimensional Euclidean
space R. Assume that there ecists a constant R, a cube Q and
an open covering {f2} of 32 such that the diameter of 32 is not
greater than R, and 12 is star-shaped with respect to a cube Q
congruent to Q. In cases m>0, assume that for each point
12 th number of 12 containing is not greater than a constant
N. Then there holds the imbedding:

W’,()-W,,,--(t)

if l n__ + m_m k >= O, 1 <p<q< oo and if either one of the conditions
P q

(i) p<q, m>0, (ii) k is not an integer, m=0, and (iii)re=n, is

satisfied.
For functions f(x) on 12, we define

=sup II f(, ", :e., x’")

where ’=(.+, .--, x) and t2.. is the set of points (,,--.,
such that (x, ..., x., x’) e O, and for fe C**(D)

il fll,  + II (t is an integer.)*’
lal =I

or

(l=13+a,O<a<l)
Here the spaces W,’,-’(O) ar defined as the completions of
subsets of C-(9) consisting of functions f with II f ll,,,-.<-W,, W,,,, C= W,,,.

In the following we assume that O is bounded and is srshaped
with resct to a cube. It is easy to extend the results for general
domains.

Let be a unded star-shard domain with respect to a cube

*) f)(z) denotes the a-th derivative of f(z).
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Q and choose (x)e C’(R) such that (x)dx-1 and f(z) is identically

equal to zero outside Q. For f(x)e C’(9), we have by Taylor’s
formula,

(x-- z)f,,(z) + l f’’(x+ t(z-- x))t-dt.

Multiplying by (z) and integrating with resct to z, we have

f(x)- o’-d l (x-z)(z)ff’(x+)(z-x))dz

(z)(-z)f(z)dz, ( )

where (z) is a linear combination of derivatives of (z). In the
same way, we have

f(x)- d$[@(, z)e(w){f(x+ t(z- a)) f(+ t(w-x))}dzdw
Jo$ J J

+ (z)f(z)dz, ( 2 )

where @(x, z)-n(z)+ (z x)(z).
"=

Our proof of the Theorem is based on these fomulas and the
following

Lemma 1. Let be boued a star-shaped with respect
Q. Se w=9S where S is a (n-m)-dimensional subspace of
R and le$ K(x, z) ( e S, z e R) be a CU-fu$ion having
contained in S Q. For any function f such $ha$ for any compac$
subse B in w,

sup sup f(x+(z- x)) dz<

F(x) :()d f(x+(z- x))K(x, z)dz

where 0()-,0TI, a l)O. Assume $ha
P

-k0, h)k, 1<pq< and assume further one of the following
q
coOl,ions:

(i) p<q, r)0, and (ii) k is not an integer, k<l, r=O, (iii)
Then

i F() I.,.-.-,, CT I fI1,, ( 3 )
holds for any fe L()K(w), where C is a constant indepeen

off and T.
Proof of the Theorem. Note that the theorem is proved by

showing the estimate
]]f[lv,q,_foC]f[v,o (foy any fe C’() W"Cg).
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If l is an integer, then we have this estimate by (1) and
Lemma 1. Next consider the case in which O<=k<l<l. The first
term on the right side of (2) can be written in the form

F(x)- +t(z-), +t(w- x))K(x, z, w)dzdw,

where f(x, y)-{f(x)- f(y)} x-y -, K(x, z, w)-(x, z)(w) z-w

u l+---n. By Lemma 1, choosing S-{(x, x) lx e R’}, we have
p

II F c Ii
Thus the theorem is proved in this case. Consider now the case
in which l-l/a, O<a<l,k>_[l]. By the result just proved we
have II f Ilz,q,,-<=C II f I1, for any a with i( i--[l]. Therefore,
the theorem is proved in this case also. Choosing a suitable r, and
considering two imbeddings W,--.Wm,, and Wm,’--.W,q,-, we can
prove the theorem in general cases.

To prove Lemma 1 we will use the following.
Lemma 2. Let t, w, ](t), Q, T be as in Lemma 1. Assume that

(i) /-l----n+r>__0, p<q, r>O, or (ii) />0. Then for any
P q

function f L(9)

Ili(t)dti, f(x+t(z-x)) dzll.q,,_,_,(,<=CT" I[ fl’.,(,). (4)

Proof. We may suppose that S= {(x’, 0)Ix’ e R"-}. By ttSlder’s
inequality we have

I [f(x+t(z-x))ldz<=C( ,dz’(I If(’-$(z’-x’), tz")l’dz")
< + t(z’-x’))dz’,

where Q’-S Q, Qffi,- {x" (’, x") e Q}, {2ffi,- {x" (x’, ") e/2} and
g(x’)-]1 f(x’, x")

Thus it is sufficient to consider the case where m-0 and o)-9.

Case (i). We may suppose that -0, T=I, and V()--. By
HSlder’s inequality we have

J

where z=(z’, z"), z’ e R’, z" e R"-, and g(x’)= f(x’, x")
Therefore, it is sufficient to consider the case r-n. Put
+ t(z- x), s- x-z , then we have
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Applying Riesz’s inequality ([4], E5]) to the right side of this
inequality, we have the estimate (4).

Case (ii). It is sufficient to consider two cases; (a) r=n, p=q,
and (b) r-0. By HSlder’s inequality we have

I:](t)dtI, f(x+ t(z-x)) dz<= CI:t’-dt(I, f(x + t(z-x)) [" dz)

so that the estimate is verified in case (b). Finally consider case (a).
By virtue of HSlder’s inequality and Jessen’s inequality, we have

II I2](t)dt I, f(x+ t(z-))dz

<=C t’-dt f(x+ t(z-x)) ]" dzdx

Set u x+ t(x- z), v x- z. Then we have

I,I ’f(x+ t(-x))," dxdz<= I-,I ,f(u) ," dudv<__C ,.
Thus we have the estimate (4) in this case.

Proof of Lamina 1. We may suppose that S={(2, 0)]2 e R-}
and 7(t)-t-. The estimate IIFIt,,_._,.<=CT]lftl,() is an
immediate consequence of Lemma 2, so that Lamina 1 is proved
when k=0.

Case 0<k<l, r>0. Set

F(x, y)= I (t, x)t’-dt, (t, x)- I f(x + t(z-x)) dz,
J

G(x, y)- I,l--yl tl-dtl I{f(x+ t(z-x))K(x, z)-f(y+ t(z-y))K(y, z)}dz I"
Then we have

F(x) F(y) ]<= Co{F(x, y)+ F(y, x)} + G(x, y). ( 5 )
It is easily checked that

N(, )<=1- G(), G()- t’--O(t,

Thus we have

I F(x’Y)" dy’<CG(x)’-I I (t’x)t’-
," x-y + ,1-,, -y "+

dtdy’<=

where y (y’, y"), y’ e R, and w(y")= {Y’I(Y’, Y") e o}. It follows
from this estimate and Lemma 2 that

F(x, y) <CT II f ( 6 )

Now consider G(x, y). By the identity

and the inequality
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K(x, z) K(y, z +-
t

and 0<e<l-k, h-k, we have G(x, y)<=CH(x, y)+H(y, x) where

H(x, y)- t-- x-y I+(t, x)dt.
J

By Jessen’s inequality we hae

Therefore, by mma 2 we have

y I’*-’dy’) dtZ C,.G().

G(, y) II _CTa ll f ll(,. (7)
x-y ()+ ,.q,’-(----)(..)-

It follows from (5), (6), and (7) that II CT II
Case 0<k<l, r-0. We may assume that l-n----k. By HSlder’s

P
inequality we have

F(x,

and

(8)

G(x, y) CI
By (5), (8), and (9) we have F()-(y)I

Case k>__l. Set

F(x)- I:](t)dtl f(x+ t(z-x))K(x, z)dz

x u-x du.f(t)t-’dtif(u)K(x’ +
t

(9)

Letting e-0 after differentiating and changing the variables of
integration we have

DF(x) S, 7a(t)dt f(x + t(z- x))K(x, z)dz,
a_

where a(t)=](t)t-(t 1) and K(x,z)=Dg-DK(x,z). This formula
and Lemma 1 in the case already proved give the estimate (3) in
this case.
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