No. 2]

18. On the Absolute Logarithmic Summability of the Allied Series of a Fourier Series

Ву Fu Yeн

Department of Mathematics, Hsing Hua University, Sintch, Taiwan, China (Comm. by Zyoiti SUETUNA, M.J.A., Feb. 13, 1967)

1. Introduction. 1.1. Definition.^{*)} Let $\lambda = \lambda(w)$ be continuous, differentiable and monotone increasing in $(0, \infty)$, and let it tend to infinity as $w \to \infty$. For a given series $\sum_{n=1}^{\infty} a_n$, we put

$$C_r(w) = \sum_{n \leq w} \{\lambda(w) - \lambda(n)\}^r a_n \quad (r \geq 0).$$

Then the series $\sum_{1}^{\infty} a_n$ is called to be summable $|R, \lambda, r|$ $(r \ge 0)$, if (1.1.1) $\int_{A}^{\infty} \left| d \left[\frac{C_r(w)}{(w)^r} \right] \right| < \infty$

for a positive number A.

For r > 0, and non-integral w, we have

$$\frac{d}{dw}\left[\frac{C_r(w)}{\{\lambda(w)\}^r}\right] = \frac{r\lambda'(w)}{\{\lambda(w)\}^{1+r}} \sum_{n \leq w} \{\lambda(w) - \lambda(n)\}^{r-1}\lambda(n)a_n.$$

Hence $\sum_{1}^{\infty} a_n$ is summable $|R, \lambda, r|$ (r>0), if and only if (1.1.2) $\int_{A}^{\infty} \left| \frac{r\lambda'(w)}{\{\lambda(w)\}^{1+r}} \sum_{n < w} \{\lambda(w) - \lambda(n)\}^{r-1} \lambda(n) a_n \right| dw < \infty.$

1.2. We suppose that f(t) is integrable in the Lebesgue sense in the interval $(-\pi, \pi)$, and is periodic with period 2π , so that $(1.2.1) \qquad f(t) \sim \frac{1}{2}a_0 + \sum_{1}^{\infty} (a_n \cos nt + b_n \sin nt) = \frac{1}{2}a_0 + \sum_{1}^{\infty} A_n(t).$ Then the allied series is

(1.2.2)
$$\sum_{1}^{\infty} (b_n \cos nt - a_n \sin nt) = \sum_{1}^{\infty} B_n(t).$$

We write

(1.2.3)
$$\psi(t) = \frac{1}{2} \{ f(x+t) - f(x-t) \}, \quad \theta(t) = \int_{t}^{\pi} \frac{\psi(u)}{u} du$$

The object of the present paper is to prove the following Theorem. If $t^{-1} | \theta(t) | \log \frac{2\pi}{t} \in L(0, \pi)$, then (1.2.2) is summable $|R, \log w, 2|$ at t=x.

This theorem was conjectured by N. Basu in a stronger form.

2. Proof of the Theorem. 2.1. We write

(2.1.1)
$$g(w, t) = \sum_{n \le w} \log n \left(\log \frac{w}{n} \right) \sin nt,$$

^{*)} Mohanty (1).

F. Үен

(2.1.2)
$$h(w, t) = \sum_{n \le w} n \log n \left(\log \frac{w}{n} \right) \cos nt.$$

For the proof of the theorem we require the following lemmas: Lemma 1. $g(w, t) = O(w \log w)$.

Proof. By (2.1.1),

$$|g(w, t)| \leq \sum_{n \leq w} \log n \left(\log \frac{w}{n} \right).$$

Now we put

$$\sum_{n < w} \log n \left(\log \frac{w}{n} \right) = \sum_{n < w^2} \log n \left(\log \frac{w}{n} \right) + \sum_{w^2 < n < w} \log n \left(\log \frac{w}{n} \right) = P + Q.$$

Since $\log u \left(\log \frac{w}{u} \right)$ is monotone increasing in $1 \le u < w^{\frac{1}{2}}$, we have, by the second mean value theorem,

$$P \leq \int_{1}^{w^{\frac{1}{2}}} \log u \left(\log \frac{w}{u} \right) du + O((\log w)^{2})$$

$$\leq \log w^{\frac{1}{2}} (\log w^{\frac{1}{2}}) w^{\frac{1}{2}} + O((\log w)^{2}) = O(w^{\frac{1}{2}} (\log w)^{2}).$$

Since $\log u \left(\log \frac{w}{u} \right)$ is monotone decreasing in $w^{\frac{1}{2}} \leqslant u \leqslant w$, we have $Q \leqslant \int_{w^{\frac{1}{2}}}^{w} \log u \left(\log \frac{w}{u} \right) du + O((\log w)^2) \leqslant \log w \int_{w^{\frac{1}{2}}}^{w} \left(\log \frac{w}{u} \right) du + O((\log w)^2)$ $= w \log w \int_{1}^{w^{\frac{1}{2}}} \frac{\log v}{v^2} dv + O((\log w)^2) = O(w \log w).$

Hence we get the required inequality.

Lemma 2.
$$g(w, t) = O(t^{-1}(\log w)^2)$$
.
Proof. By Abel's lemma, we have
 $g(w, t) = \sum_{n \le w} \log n \left(\log \frac{w}{n}\right) \sin nt$
 $\leq \frac{A}{t} \sum_{n \le w^{-1}} \left| \Delta \left(\log n \log \frac{w}{n}\right) \right| + O(t^{-1}w^{-1}\log w)$
 $\leq \frac{A}{t} \left\{ \sum_{n \le w^{\frac{1}{2}}} \left| \Delta \left(\log n \log \frac{w}{n}\right) \right| + \sum_{w^{\frac{1}{2} \le n \le w^{-1}}} \left| \Delta \left(\log n \log \frac{w}{n}\right) \right| \right\}$
 $+ O(t^{-1}w^{-1}\log w)$
 $= O(t^{-1}(\log w)^2),$

since $\log u \left(\log \frac{w}{u} \right)$ is monotone increasing in $1 \le u < w^{\frac{1}{2}}$ and monotone decreasing in $w^{\frac{1}{2}} \le u \le w$.

Lemma 3. $g(w, t) = O(t^{-2} \log w)$.

Proof. Using Abel's lemma twice, we have

$$g(w, t) = \sum_{n \le w} \log n \left(\log \frac{w}{n} \right) \sin nt$$
$$= \sum_{n \le w-2} \Delta^2 \left(\log n \log \frac{w}{n} \right) \sum_{1}^{n} \widetilde{D}_v(t) + O(t^{-2}w^{-1}\log w) + O(t^{-1}w^{-1}\log w),$$

78

No. 2]

so that

$$(2.1.3) \qquad \left| g(w, t) \right| \leq \frac{A}{t^2} \sum_{n \leq w^{-2}} \left| \varDelta^2 \left(\log n \log \frac{w}{n} \right) \right| + O(t^{-2} w^{-1} \log w) \\ = \frac{A}{t^2} \left\{ \sum_{n < e^{w^2}} + \sum_{e^{w^2} \leq n \leq w^{-2}} \right\} + O(t^{-2} w^{-1} \log w) = \frac{A}{t^2} (P+Q) + O(t^{-2} w^{-1} \log w).$$

Since $\left(\log u \log \frac{w}{u}\right)$ is monotone decreasing in $1 \le u < ew^{\frac{1}{2}}$ and monotone increasing in $ew^{\frac{1}{2}} \le u \le w-2$, we have

$$(2.1.4) \qquad P = \sum_{n < ew^{\frac{1}{2}}} \left| \varDelta \left(\frac{1}{n} \log \frac{w}{n} - \frac{1}{n} \log n \right) \right| = O(\log w),$$

$$(2.1.5) Q = \sum_{w^{\frac{1}{2}} \leq n \leq w^{-2}} \left| \Delta \left(\frac{1}{n} \log \frac{w}{n} - \frac{1}{n} \log n \right) \right| = O(w^{\frac{1}{2}} \log w).$$

Thus from (2.1.3), (2.1.4), and (2.1.5), we get the required inequality. Lemma 4. $h(w, t) = O(t^{-1}w \log w)$.

Proof. Using Abel's lemma to (2.1.2), we get

$$\begin{split} h(w,t) &= \sum_{n < w} n \log n \log \frac{w}{n} \cos nt \\ &\leq \frac{A}{t} \sum_{n < w^{-1}} \left| \varDelta \left(n \log n \log \frac{w}{n} \right) \right| + O(t^{-1} \log w) \\ &= \frac{A}{t} \left\{ \sum_{n < \eta w} + \sum_{n w < n < w^{-1}} \right\} + O(t^{-1} \log w) = \frac{A}{t} (P+Q) + O(t^{-1} \log w), \end{split}$$

where η is taken so that $\left(u \log u \log \frac{w}{u}\right)$ is monotone increasing in $1 \leq u < \eta w$ and monotone decreasing in $\eta w \leq u \leq w$, $0 < \eta < 1$. Therefore we get $P = O(w \log w)$ and $Q = O(w \log w)$. Hence we get the required inequality.

Lemma 5. $h(w, t) = O(t^{-2}(\log w)^2)$.

Proof. By twice use of Abel's lemma, we have

$$h(w, t) = \sum_{n \leq w-2} \Delta^2 \left(n \log n \log \frac{w}{n} \right) \sum_{1}^n D_v(t) + O(t^{-2} \log w).$$

Therefore

$$|h(w, t)| \leq \frac{A}{t^2} \sum_{n \leq w-2} \left| \mathcal{A}^2 \left(n \log n \log \frac{w}{n} \right) \right| + O(t^{-2} \log w)$$

= $\frac{A}{t^2} \left\{ \sum_{n < e^{-1}w^{\frac{1}{2}} < n \leq w-2} + \sum_{e^{-1}w^{\frac{1}{2}} < n \leq w-2} \right\} + O(t^{-2} \log w) = \frac{A}{t^2} (P+Q) + O(t^{-2} \log w).$

Since $\left(u \log u \log \frac{w}{u}\right)'$ is monotone increasing in $1 \le u < e^{-1}w^{\frac{1}{2}}$ and is monotone decreasing in $e^{-1}w^{\frac{1}{2}} \le u \le w$, we have

$$P = \sum_{n < e^{-1}w^{\frac{1}{2}}} \left| \varDelta \left(\log n \log \frac{w}{n} + \log \frac{w}{n} - \log n \right) \right| = O((\log w)^2),$$
$$Q = \sum_{e^{-1}w^{\frac{1}{2}} \leq n \leq w-2} \left| \varDelta \left(\log n \log \frac{w}{n} + \log \frac{w}{n} - \log n \right) \right| = O((\log w)^2).$$

Hence we get the required inequality.

Lemma 6. $h(w, t) = O(t^{-3} \log w)$.

Proof. By three time use of Abel's lemma, we have

$$\begin{split} h(w, t) &= \sum_{n < w - 2} \Delta^2 \Big(n \log n \log \frac{w}{n} \Big) \sum_{1}^{n} D_v(t) + O(t^{-2} \log w) \\ &= \frac{1}{4 \sin^2 t/2} \sum_{n < w - 2} \Delta^2 \Big(n \log n \log \frac{w}{n} \Big) \\ &- \frac{1}{4 \sin^2 t/2} \sum_{n < w - 2} \Delta^2 \Big(n \log n \log \frac{w}{n} \Big) \cos (n + 1)t + O(t^{-2} \log w) \\ &= -\frac{1}{4 \sin^2 t/2} \sum_{n < w - 2} \Delta^2 \Big(n \log n \log \frac{w}{n} \Big) \cos (n + 1)t + O(t^{-2} \log w) \\ &= -\frac{1}{4 \sin^2 t/2} \sum_{n < w - 3} \Delta^2 \Big(n \log n \log \frac{w}{n} \Big) \sum_{1}^{n} \cos (n + 1)t + O(t^{-2} \log w) . \end{split}$$

Thus we have

$$|h(w, t)| \leq \frac{A}{t^3} \sum_{n < w - 3} \left| \Delta^3 \left(n \log n \log \frac{w}{n} \right) \right| + O(t^{-2} \log w)$$

= $\frac{A}{t^3} \left\{ \sum_{n < w^2} + \sum_{w^{\frac{1}{2}} \leq n < w - 3} \right\} + O(t^{-2} \log w) = \frac{A}{t^3} (P + Q) + O(t^{-2} \log w).$

Since $\left(u \log u \log \frac{w}{u}\right)''$ is monotone decreasing in $1 \le u < w^{\frac{1}{2}}$ and monotone increasing in $w^{\frac{1}{2}} \le u \le w$, we have

$$P = \sum_{n < w^2} \left| \varDelta \left(\frac{1}{n} \log \frac{w}{n} - \frac{1}{n} \log n - \frac{2}{n} \right) \right| = O(\log w).$$

Similarly we have $Q = O(w^{-\frac{1}{2}} \log w)$. Hence we get the required inequality.

2.2. We shall now prove the theorem. By integrating by parts, we find

$$(2.2.1) \qquad B_{n}(x) = \frac{2}{\pi} \int_{0}^{\pi} \psi(t) \sin nt \, dt = -\frac{2}{\pi} \int_{0}^{\pi} t \theta'(t) \sin nt \, dt \\ = \frac{2}{\pi} \int_{0}^{\pi} \theta(t) \sin nt \, dt + \frac{2}{\pi} \int_{0}^{\pi} \theta(t) \, nt \cos nt \, dt.$$

The series $\sum_{1}^{\infty} B_n(x)$ is summable $|R, \log w, 2|$, if

$$I = \int_{s}^{\infty} \frac{dw}{w(\log w)^{3}} \Big| \sum_{n < w} \log n \log \frac{w}{n} B_{n}(x) \Big| < \infty.$$

Substituting (2.2.1) for $B_*(x)$, we have, by (2.1.1) and (2.1.2),

$$(2.2.2) \qquad I \leq \frac{2}{\pi} \int_0^{\pi} |\theta(t)| dt \int_s^{\infty} w^{-1} (\log w)^{-3} |g(w, t)| dw \\ + \frac{2}{\pi} \int_0^{\pi} t |\theta(t)| dt \int_s^{\infty} w^{-1} (\log w)^{-3} |h(w, t)| dw.$$

Since $\int_{0}^{\pi} t^{-1} |\theta(t)| \log \frac{2\pi}{t} dt$ is finite, it is enough to show that

$$I_1 = \int_{s}^{\infty} w^{-1} (\log w)^{-s} |g(w, t)| dw = O\left(t^{-1} \log \frac{2\pi}{t}\right) \quad \text{for } 0 < t < \pi;$$

and

$$I_{2} = \int_{a}^{\infty} w^{-1} (\log w)^{-3} |h(w, t)| dw = O\left(t^{-2} \log \frac{2\pi}{t}\right) \quad \text{for } 0 < t < \pi$$

Let
$$A_1 = \frac{2\pi}{t} \log \frac{2\pi}{t}$$
, $A_2 = e^{2\pi/t}$ and let

(2.2.3)
$$I_1 = \int_{a_1}^{a_1} + \int_{a_1}^{a_2} + \int_{a_2}^{\infty} = I_{11} + I_{12} + I_{13}.$$

Using Lemma 1, we have

(2.2.4)
$$I_{11} = O\left(\int_{0}^{41} (\log w)^{-2} dw\right) = O\left(t^{-1} \left(\log \frac{2\pi}{t}\right)^{-1}\right).$$

By Lemma 2, we have

(2.2.5)
$$I_{12} = O\left(t^{-1} \int_{A_1}^{A_2} w^{-1} (\log w)^{-1} dw\right) = O\left(t^{-1} \log \frac{2\pi}{t}\right).$$
By Lemma 3. we have

(2.2.6)
$$I_{13} = O\left(t^{-2}\int_{A_2}^{\infty} w^{-1}(\log w)^{-2}dw\right) = O(t^{-1}).$$

Hence from (2.2.3), (2.2.4), (2.2.5), and (2.2.6), we get $I_1 = O\left(t^{-1}\log\frac{2\pi}{t}\right)$.

It remains to prove that $I_2 = O\left(t^{-2}\log\frac{2\pi}{t}\right)$. Let $A_1 = \frac{2\pi}{t}\log\frac{2\pi}{t}$, $A_2 = e^{2\pi/t}$ and let

(2.2.7)
$$I_2 = \int_a^{\infty} = \int_a^{A_1} + \int_{A_1}^{A_2} + \int_{A_2}^{\infty} = I_{21} + I_{22} + I_{23}.$$

By Lemma 4, we have

(2.2.8)
$$I_{21} = O\left(t^{-1} \int_{s}^{4_{1}} (\log w)^{-2} dw\right) = O\left(t^{-2} \left(\log \frac{2\pi}{t}\right)^{-1}\right).$$

By Lemma 5, we have

$$(2.2.9) I_{22} = O\left(t^{-2}\int_{A_1}^{A_2} w^{-1}(\log w)^{-1}dw\right) = O\left(t^{-2}\log\frac{2\pi}{t}\right).$$

By Lemma 6, we have

$$(2.2.10) I_{23} = O\left(t^{-3} \int_{A_2}^{\infty} w^{-1} (\log w)^{-2} dw\right) = O(t^{-2}).$$

Hence from (2.2.7), (2.2.8), (2.2.9), and (2.2.10), we have the required inequality for I_2 . Thus the proof of the theorem is completed.

The author has great pleasure in taking this opportunity of expressing his warmest thanks to Professor S. Izumi for his valuable suggestion and guidance.

Reference

 R. Mohanty: On the absolute Riesz summability of a Fourier series and its allied series. Proc. London Math. Soc., 52(2), 295-320 (1951).