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Introduction. Let X and Y be normal topological spaces. The
product space X Y is not necessarily normal. The problem of decid-
ing when X Y is normal, is interesting, in view of the fact that
a Hausdorff topological space is normal if and only if any continuous
real-valued function defined on any closed subset can be extended
to a continuous function on the whole space. In this paper we shall
settle this problem in the case where each factor space is a locally
compact linearly ordered space. Our result extends the Ball’s theorem
[1, which assumes that one factor space is compact.

1o By a linearly ordered space we mean a linearly ordered set
with the interval topology. It is well known that every such space
is normal.

Let L be a non-empty linearly ordered space. An interior gap
of L is a Dedekind cut (A[B) of L such that A=/=, B=/=. A has
no last point and B has no first point. If L has no first (last)point,
there exists a left (right) end gap (. L) ((LIe)). We denote by L’
the set of all gaps of L and by L the sum of L and L’. L is a
compact linearly ordered space. To denote intervals of L, we shall
employ the Bourbaki’s symbols, _, , -, , etc. Boundaries of an
interval of L may be gaps of L as well as points of L.

We define p(L) as follows. In case L has a right end gap which
is not a limit of interior gaps of L, we put p(L)-a, where r is a
regular initial ordinal such that there exists an increasing sequence
{x; 2} of points of L which is cofinal with L. In all other cases
we put p(L)-0, more precisely, p(L)-O in the following three cases;
(1) L-C, (2) L has a last point, (3) L has a right end gap which
is a limit of interior gaps of L.

Let u be any point or gap of L. We put p_(u)-p( ,u[ )
and p+(u)-p( u,--[ * ), where * signifies the inversely ordered
set. Finally we define v(L) for locally compact linearly ordered
space L, as follows, v(L)-the smallest regular initial ordinal a
such that p_(x)v and p+(x)o for every point x e L.

We shall say that a point or gap u of L is of type r, if either
p_(u)-r or p+(u)-v. We denote by co the first infinite ordinal.
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Lemma 1. Let X and Y be linearly ordered spaces. If X has
a point of type , and Y has a gap of type c, for some regular
initial ordinal , then X Y is not normal.

Proof. Let us suppose xeX, veY’, and p_(x)-
Let W(a) be the linearly ordered space of all ordinals less than
We can find strictly increasing and continuous mappings f" W(a)-X
and g’W(a)--Y, with lira f(2)-x, lira g()-v. Consider the fol-

lowing two subsets of X Y; {(f(), g()); <} and {} Y. These
are disjoint closed subsets, but cannot be separated by disjoint open
sets, since >co. Hence X Y is not normal.

Lemma 2. Le$ X be a linearly ordered space without any
gaps other than the right end gap u, and let Y by a compact
linearly ordered space. If p_(u)>__v(Y), then X Y is normal.

For a proof of this lemma, see 1.
2. This section is devoted to a proof of the following lemma.
Lemma :. Let X and Y be linearly ordered spaces without

any gaps other than the right end gaps u and v respectively. If
p_(u) , p_(v) a, and a >= v(X) a >= v(Y) for some a w, then X Y
is normal.

Proof. (i). We can find a strictly increasing and continuous
mapping f" W(a)--X, such that the image f(W(a)) is cofinal with
X, and f(0)- the first point of X. Using f, we can construct an
increasing and left continuous mapping " X-W(a) as follows.
(x) , if f() x, and (x) + 1, if f() < x<f(+ 1). Then clearly
](f(;))-2 and f(f(x))>=x. Similarly, we can define g’W(a)-Y and

" Y-- W(a), with the same properties as f and f. Let us consider
the composed mappings -go9 and =fo. Then obviously and

are increasing and left continuous, and we have
(2, 1) o(x)>__x for any xX and

o(y) >___y for any y Y.
We define subsets Z1, Z, D of X Y as follows.

ZI--{(X y) y>=qg(X)}, Z2--{(X, y) x(y)},
D--[JQ(), where Q(2) denotes a point (f(), g()) if is a limit

ordinal or 0, and Q(2)- f(/), f(2) g(/), g(2) if 2 is an isolated
ordinal succeeding /. Then we can see
(2,2) X Y=ZIUZ.UD.
(ii). Let us agree in this section that ior any subset A of X Y,
fi’ denotes the closure of A in the enlarged space
We now wish to prove that, for any closed subset FX Y,
(2,3) P’ (u, v) implies FD’ (u, v),
where u and v are the right end gaps of X and Y as before.

Suppose FD" (u, v). Then there is a neighborhood
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N-{(x, y); x0< x, Y0< Y}
of the point (u, v) for which FDN-. On the other hand, from

(2,2), /O’- F-;o-;O-FD: Since /’ (u, v), either F’ (u, v) or

FZ (u, v).
We may assume F’ (u, v). Then we can find a sequence of

points {(x, y); n-l, 2, <w}FZIN such that x>(y_), for
every n. Then it follows from the definition of Z and from (2, 1)
that ynqg(Xn)-qgo,df(yn_l) Y-I and
Putting -lim x, -lira y, we can see easily that 5 =f(), -g(/)
where -()-(). Hence (, ) e FDN. This contradicts the
choice of N. Thus (2,3) is proved.
(iii). We shall prove next that
(2,4) if F and F. are closed subsets of X Y and FF-, then

1’ (u, v).
Suppose F;F (u, v). Then by virtue of (2,3), we have

FID’F---D’ s (u, v).
Hence we can choose a sequence 202 "", such that
Q(2)F:/: and Q(2+)F.:/: for every n, by the definition of D.
Then we can see that Q(lim 2) is a point contained in FF. This
contradicts the hypothesis FiF.-, and (2,4) is proved.
(iv). Finally we shall prove that for any disjoint closed subsets F
and F of X Y, there exist open sets G and G such that GIFi,
G F., G G-.

By (2,4), at least one of the sets ’, _P’ does not contain (u, v).
Let us suppose /0 (u, v). Then there exists a neighborhood

N-{(x, y) Xo<=X, yo<=y}
of (u, v) such that FN=. Lemma 2 shows that subsets -,x0 Y
and [x0,--[ -,y0 of X Y are normal. Hence it follows that their
sum, denoted by K, is normal. Since FK and FK=F are dis-
joint closed subsets of K, there exist open subsets U, U of X Y,
such that U FK, U.F, UU.K= 0. Then
G1- UV( x0,-[ y0,-_ ), G- U (complement of N in X Y)

are desired open sets. Thus the lemma 3 is verified.
:. Definition. A locally compact linearly ordered space X

is said to be of quasi-countable type, if for every gap u of X,
p_(u) <= o) and p+(u) <= w.

It is easily seen that a locally compact linearly ordered space
is paracompact if and only if it is of quasi-countable type.

Definition. A locally compact linearly ordered space X is said
to be regular of type , (where is a regular initial rdinal w),
if the following three conditions are satisfied.
(3,1) For any gap u of X, p_(u) > o) implies p_(u)-
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implies p+(u) c.
(3,2) There exists a gap Uo of X such that p_(Uo)-a or p+(Uo)-a.
(3,3) v(X)__< a.

Theorem. Let X and Y b locally compact linearly ordered
spaces. Then X Y is normal, if and only if one of the follow-
ing two conditions is satisfied.
(a) At least one of X and Y, say Y, is of quasi-countable type
and for any gap u of X, p_(u) w implies p_(u) (Y) and p+(u) o)

implies p+(u) >= v(Y).
(b) There exists an uncountable regular initial ordinal a, such
that both X and Y are regular of type a.

Proof of the necessity. We suppose that X Y is normal.
(a’) In case Y is of quasi-countable type. If wp_(Uo) ’c(Y) for
some gap u0 of X, then for some point of Y, wp_(Uo)<=p_() or
p/(). It is easy to see that there exists a point y0 in a neighbor-
hood of , such that p-(Uo)-p-(yo) or P+(yo). Then Lemma I shows
that X Y is not normal, contradicting our assumtion. Therefore
if wp_(u) for some gap u ot X, then ’(Y) <= p_(u), and similarly
for p+.
(b’) In case neither X nor Y is of quasi-countable type. There are
gaps Uo X’, Vo e Y’ such that max{p_(u0), p+(Uo)} >w and max{p_(v0),
p+(vo)}>w. We may assume p_(Uo)W and p_(Vo)>W. At first we
must show that p_(Uo)- p_(Vo). Suppose, for instance, p_(Uo) p-(Vo).
Then by definition of p_, there exists an interval Ix0, u0[, which has
no interior gaps, and we can find a point x in this interval such
that p_(x)-p-(Vo). Hence by Lemma i we are lead to a contradiction.
Thus we can conclude p_(Uo)-p_(Vo). We denote this value by a.
The above observation shows also that for any ueX’ and
v e Y’, p+/-(u), p+_(v) must take the same value a, as far as they are
uncountable. Next, if p_(Uo) a :(Y), then X Y cannot be normal
as is seen in (a), hence we have a__>r(Y), and similarly __> r(X).
Thus X and Y are regular of type a.

Proot ot the suiclenc/. Let X= U I be the decomposition of
X as a sum of disjoint intervals, where each interval I has no
interior gaps and I is maximal with respect to this property. It
follows easily that each I is both open and closed, since X is locally
compact. Let Y- J be the analogous decomposition of Y. Then
each product I J is also an open and closed subset of X Y. Therefore
it is sufficient to prove that each Ix J normal. Now we take a point
(a, b) in Ix J and put/- a,--_ I- -,a*, J- b,-- J--, b*.
Again if each L J, i, j-l, 2, is normal, Ix J is also normal. We
shall prove the normality of L J. in each case (a) and (b), writing
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anew I J instead of L J..
Case (a). If J has a right end gap v, then p_(v)=w by assump-

tion. Hence we can take a sequence y0<y< <y< with
limit v, and y0 the first point of J. If each Iy_, y is
normal, it is evident that I J is normal. Hence this case is reduced
to the case where J is compact. Similarly if the interval I has a
right end gap of type w, we can replace I by a compact interval.
Therefore it suffices to prove for only two cases, (1) I and J are
compact, (2)I has a right end gap u with p_(u)’(Y) and J is
compact. Since v(J)<=’(Y), normality of I J follows from lemma 2.

Case (b). If we apply the reduction mentioned in case (a), we
can see that normality for this case follows from Lemma 3. Hence
our theorem is proved.
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