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J. von Neumann has shown that two ergodic flows with the
same pure point spectrum are mutually metrically equivalent, and
that they are isomorphic to the canonical flow on a compact Abelian
group. While non-ergodic flows with the same pure point spectrum
are not always mutually metrically equivalent.

In this paper, we shall show that, for a certain class of non-
ergodic flows with pure point spectra, the spectral type determines
the flow metrically. Flows of this class often appear as flows in-
duced by stationary stochastic processes and as transversal flows of
automorphisms.

1o Canonical flows on compact Abelian groups. Let G be a
separable compact Abelian group, m be the normalized Haar measure
of G and !I be the minimum complete a-field generated by all open
subsets of G. Then (G, !lift, m) is a Lebesgue space in the sense of
V. A. Rohlin 4. Let {q} be a one-parameter subgroup of G. Then
the flow {S} on G is defined by
(1,1) Stg =otg for g e G.

Definition 1. We call {S} the G-flow induced by
The G-flow {S} is measurable and it is ergodic if and only if

H= {er; oo < t< oo} is dense in G.
If 1 is a countable subgroup of the additive group R of real

numbers, then its character group G is a separable compact Abelian
group and there exists a one-parameter subgroup {at} of G, such that
(1,2) t(2)=exp [it2 for 2 e A.
Let {S} be the G-flow induced by the {}. Then {S} is an ergodic
flow with the pure point spectrum A. Conversely, for any ergodic
measurable flow on a Lebesgue space, the discrete part of the spec-
trum forms a countable subgroup of R.

Definition 2. We call the G-flow induced by this {a’} a ca-
nonical flow on G.

Theorem 1. (J. yon Neumann). Let {Tt} be an ergodic meas-
urable flow on a Lebesgue space with a pure point spectrum
Let {St} be a canonical flow on G which is the character group of
A. Then {T} and {St} are isomorphic to each other.
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2. Product of canonical flows. Let As;3"-l, 2, 3, -.-, N
(I<_N< o) be a system of countable subgroups of R, and G be of the
character group of A. We denote by F the direct product of the
discrete groups As;j-l, 2, 3,---, N, and by 2 the direct product of
the compact groups G; 3"- 1, 2, 3, ..., N"/’- {2- (2x, 2,., ---)} and
9-{w-(g, g,.,--.)}. Then 2 is the character group of /’. Let A
be the countable subgroup of R which is generated by A; j-l, 2,
-., N, and G be the character group of .4. Let be the natural

homomorphism of F onto A such that
(2,1) t?()-, 2 for - (2x, 2., ---).

The kernel of 0 and the character group of it are denoted by Z and
K, respectively. Then 2, G, and K are separable compact Abelian
groups. Let P, m, m0, and m; 3"-1, 2, be normalized Haar meas-
ures of 9, G, K, and G; 3"- 1, 2, ..., respectively. The measure P
turns out to be the direct product of the m. Let {a} be the one-
parameter subgroup of G determined by
(2,2) (2)-exp it for 2 e A,
and {T} be the G-flow determined by
(2,3) Tw O’W (ogl, g., ) for w e 2.
Under these notations, we state our theorems.

Theorem 2. The flow {T} defined by (2,3) has the following
properties,
1) {T} has the pure point spectrum A,
2) if Z- {0}, then {T} is ergodic,
3) if Z{0}, then {T} is not ergodic and each point 2eA has
infinite multiplicity.

Proof. Since {g(2)-(g); 2 e A} is a complete orthonormal
system of L(G, m), {fl(w)--gi(i)g.(.) g(); --(]1, "’*, ., 0, 0,
-.) e F} forms a complete orthonormal system of L(2, P). We also

have
(2,3) f(Tw)-(agi)(,)... (ag.)(.)

--exp itO()f(w).
Hence 1)is proved. Noting that any non-trivial subgroup of

Z is a infinite group, 2) and 3) are easily derived from (2,3).
Lemma 1. Let (9,,P) be a Lebesgue space and {T} be a

measurable flow on it. Let be the measurable partition of into
the ergodic parts for {T}. Suppose that there exist two ortho-
normal systems of L(9, P), {f; 2 e A} and {@,} such that
i) A is a countable subgroup of R,
ii) there exists a system of _()-measurable functions {h(2, u);, [ A} satisfying
(2,4) fi,.f,,- h(2, )fi,+,,,
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iii) f(Tw)=exp it2f(w), f(w)
iv) (Tw)=(w), -= ,
v) {} is a complete orthonormal system of L(, (), P),
vi) {f; 2 e , n} is a complete thonormal system of L(O, , P).

Then there exists a system of ()-measurable functions {7();
2eA} such that {x=7()fx;2eA} and {@} satisfy the conditions
iii)vi) and that

ii)’ .-+.
Lemma 2. Assume the same conditions as in Lemma 1, and

let be the partio induced b {x; 2 }. Then and are {Tt}-
invaant and tke are mutuall independent.

Lemma . Uer the same tonalities as in Lemma 2, {T,}
s is0morhic to the product flow of the factor flows {T} and {T}.

Lemma 4. Uer the same conditions as i Lemma 2, {T}
s isomorphic to the canonical flow {S} on G which s the character
o of A, and {T(} s the ntitu flow (i.e. T, s the dentit
of for .ever t).

By virtue of Lemma 14, we have the following theorem.
Theorem 3. Uer the same conditions as in Tkeoaem 2,

{T,} is isomorphic to the flow which is the direct product of the
canonical flow {St} on G and the identit flow on K.

Corollary 1. Countable direct product of eroodie flows with
pre point spectra is either eroodi o isomorphic to the direct
podct of an er9odc flow and a denttU flow on a Lebesoe space
wtkout atoms. The metrical tue of this product flow is deter-
mined b ts spectral tpe.

Corollary 2. Let {T,} be a flow on a N-dmensiol torus
T(1 N) sch that
(2,5) T,w (+t, +,t, ...) for w (, , ...) ,
and let A be the additive 9o 9enerated b F={2.}. Then

1) f the elements of F are linearl independent, {T,} s a
eoodic flow with the re point spectrum

2) if the elements of F are linearl depeent, {T,} s a non-
eroodi flow wtk the re int pectum
has infinite mltiplicit. The flow {T,} is somorphic to the
podct of the canonical flow o G which is the character Oroup of
A ad the identt flow a Lebesoue space without atoms.

Theorem 4. Two flows wkih are ndced b
sonal Gaussian stationar processes with re point spectra ae
mutuall meticall equivalent if a onl if tke have the same
spectral tpe.

3. Product of automorphisms. We have similar results in
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the cases of automorphisms as in the cases of flows.
Let A be a countable subgroup of one-dimensional torus T and

let G be the character group of A. Then there exists an element
a of G such that
(3,1) a(2)=exp [iJ for 2 e A.
Now, let T be an automorphism of G such that
(3,2) Tg=vg for g e G.
Then T is an ergodic automorphism with the pure point spectrum .4.
Conversely, an ergodic automorphism of a Lebesgue space with the
pure point spectrum A is isomorphic to the automorphism of the
type (3,2).

Let A; j-l, 2, 3,..- be a system of countable subgroup of T,
and G be the character group of A and be the element of G
satisfying (3,2). Let F be the direct product of the A and 12 be
the direct product of the G. Let A be the countable subgroup of
T generated by the A and be the natural homomorphism of F
onto A such that
(3,3) () 2. : (2, 2,, ---) e F

and let Z be the kernel of and K be the character group of Z.
Then an automorphism T of /2 is defined by
(3,4) Tw: (algl, a,.g,., ) for W (gl, g,., ) e 9.

Theorem 5. The automorphism T defined by (3,4) has follow-
ing properties,
1) T has the pure point spectrum A,
2) if Z: {0}, then T is ergodic,
3) if Z{0}, then T is not ergodic and has uniform multiplicity
k which is the cardinal number of Z. The automorphism T is
isomorphic to the product of the identity of K and the automorphism
of G which is defined by (3,2).

Two automorphisms of this type are mutually metrically
equivalent if and only if they have the same spectral type.

Remark. If Z is a finite set with cardinal number k then K
has k atoms with measure 1/k. If Z is an infinite set, K is a
Lebesgue space without atoms.

Corollary 1. Let T be an automorphism of T such that
(3,5) Tw (Xl+2, x,.+ 2., ---) for w e T
and let A be the subgroup of T generated by F= {2,}. Then

1) if the elements of F are linearly independent, T is an
ergodic automorphism with the pure point spectrum A,

2) if the elements of F are linearly dependent, T is non-ergodic
automorphism with the pure point spectrum A, and each point 2 e A
has infinite multiplicity. The automorphism T is isomorphic to the
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product of the identity of a Lebesgue space without atoms and an
ergodic automorphism with the pure point spectrum A.

Two automorphisms of this type are mutually metrically equiva-
lent if and only if they have the same spectral type.

Theorem 6. Two automorphisms which are induced by multi-
dimensional discrete Gaussian stationary processes with pure point
spectra are mutually metrically equivalent if and only if they have
the same spectral type.
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