83. A Criterion for the Separable Axiomatization of Gödel's S_n

By Tsutomu Hosoi

Mathematical Institute, University of Tokyo (Comm. by Zyoiti SUETUNA, M.J.A., May 12, 1967)

This report is an extension to our papers [2] and [3]. And we use notations and results of them without mentioning.

In this paper, we report a criterion for an axiom scheme to give a separable axiomatic system for S_n by adding it to Dummett's *LC*, and we also report that there is no intermediate axiomatic system between S_n and S_{n+1} . Our result is also an extension to that obtained by Hanazawa [1] in the following form, though we do not suppose familiarity with it.

Theorem 1 (By Hanazawa). The system LI + A is equivalent to the usual classical system S_1 if and only if A is valid in S_1 but not in S_2 .

Since axiomatic systems are known for S_n 's, the validity in S_n is equivalent to the provability in S_n . Though Hanazawa does not mention explicitly, the above theorem implies the following

Corollary 2. There is not an intermediate axiomatic system between S_1 and S_2 .

Further, we have a stronger

Corollary 3. If $S_1 \supseteq L \subset LI$, then necessarily $S_2 \supset L$.

Proof. Suppose that $L \vdash A$ but not that $S_2 \vdash A$. Then $S_1 \supset \subset LI \vdash A$ since $S_1 \vdash A$. On the other hand, we obviously have that $L \supset LI \vdash A$. This is contrary to our hypothesis.

Before we mention our theorem, we remark that the above theorem does not generally hold for S_n and S_{n+1} in the above form. Let us take the formula P_n of Nagata, for example. We know that P_n is valid in S_n but not in S_{n+1} , but as we reported in [2], $LI+P_n$ is not equivalent to S_n . So we prove a similar theorem in the following form.

Theorem 4. $LC + A \supset \subset S_n$ if and only if $S_n \vdash A$ and not $S_{n+1} \vdash A$.

Before we prove the theorem, we quote some lemmas from our previous papers without proof.

Lemma 5. Suppose a formula A has k distinct propositional variables at the most. Then $LC \vdash A$ if and only if $S_{k+1} \vdash A$.

Lemma 6. Suppose that A does not contain the logical opera-

T. Hosoi

tion –. Then, under the hypothesis of the lemma 5, $LC \vdash A$ if and only if $S_k \vdash A$.

Lemma 7. Let be that $S_n \vdash A$ and let f be an assignment of **LC**. If f satisfies one of the following conditions, then f(A)=1:

(1) $H(f) \le n-1$.

(2) H(f) = n, and $V(f) \ni 1$ or $\ni \omega$.

(3) H(f) = n+1, and $V(f) \ni 1$ and $\ni \omega$.

Lemma 8. Let A be a formula which does not contain the logical operation \neg . Let be that $S_n \vdash A$ and let f be an assignment of *LC*. If f satisfies one of the following conditions, then f(A)=1:

(1) $H(f) \leq n$.

(2) H(f) = n+1, and $V(f) \ni 1$.

Lemma 9. Let be that $S_n \vdash A$. If f is an assignment of S_{n+1} , then f(A)=1 or f(A)=2.

Lemma 10. $LC + R_n \supset \subset LI + R_n \supset \subset S_n$, where

 $R_n = a_1 \vee (a_1 \supset a_2) \vee \cdots \vee (a_{n-1} \supset a_n) \vee \neg a_n.$

Proof of Theorem 4. (i) Suppose that $LC+A\supset \subset S_n$. Then obviously $S_n\vdash A$. If $S_{n+1}\vdash A$, then $S_n\supseteq S_{n+1}\supset LC+A$. This is contrary to the hypothesis.

(ii) Suppose that $S_n \vdash A$ but not that $S_{n+1} \vdash A$. Then there is an assignment φ of S_{n+1} such that $\varphi(A) = 2$. Without loss of generality, we can suppose that A contains the propositional variables a_1, \dots, a_k and only those. By the lemma 7, we can suppose that $V(\varphi) \supset \{2, \dots, n+1\}$. We substitute the propositional variables of A with regard to the assignment φ as follows. First, if i < jand $\varphi(a_i) = \varphi(a_j)$, a_j is substituted by a_i . We repeat this substitution as long as this can be operated. Since $V(\varphi) \supset \{2, \dots, n+1\}$, there is a propositional variable for which φ assigns the value 2. We suppose that $\varphi(a_i) = 2$. Then we substitute those a_i 's for which $\varphi(a_i) = 1$ or $\varphi(a_i) = \omega$ by $a_i \supset a_i$ or $\neg (a_i \supset a_i)$, respectively. Then the obtained formula contains exactly n propositional variables. And lastly, we do substitution in A so that A contains just a_1, \dots, a_n and that $\varphi(a_i) < \varphi(a_i)$ if and only if i < j. Since $V(\varphi) = \{2, \dots, n+1\}$, $\varphi(a_i) = i + 1$. We call this formula obtained from A by substitution as A^{φ} . If it is proved that $LC \vdash A^{\varphi} \supset R_n$, then $LC \vdash A \vdash R_n$ and so $LC + A \supset S_n$. And on the other hand we have obviously that $S_n \supset LC + A$. So $LC + A \supset \subset S_n$ is proved. Hence we only need to prove that $LC \vdash A^{\varphi} \supset R_n$. Since the formula $A^{\varphi} \supset R_n$ has n distinct propositional variables, it will be sufficient if we prove that $S_{n+1} \vdash A^{\varphi} \supset R_n$ by the lemma 5. Let f be an assignment of S_{n+1} . If $f(R_n)=1$, then obviously $f(A^{\varphi} \supset R_n)=1$. Suppose that $f(R_n)\neq 1$.

366

By the definition of R_n , $f(R_n) \neq 1$ if and only if $f(a_i) = i+1$. Hence $f(A^{\varphi}) \neq 1$. By the lemma 9, $f(A^{\varphi}) = f(R_n) = 2$. Hence $f(A^{\varphi} \supset R_n) = 1$. Q.e.d.

If A does not contain the logical operation \neg , the part (ii) of the above proof can be differently treated as follows. Let R'_n be $a_1 \lor (a_1 \supset a_2) \lor \cdots \lor (a_{n-1} \supset a_n) \lor (a_n \supset a_{n+1})$. This R'_n is interdeducible with R_n in **LI**. Hence $\mathbf{LI} + R'_n \supset \mathbb{C}S_n$. Let φ be an assignment of S_{n+1} such that $\varphi(A) = 2$ as in above. By the lemma 8, $V(\varphi) \supset \{2, \cdots, n+1, n+2\}$, where n+2 stands for ω for convenience. Then we do substitution for A just as before only excepting the case of $\varphi(a_j) = \omega$. A^{φ} only contains the propositional variables a_1, \cdots, a_{n+1} . And $f(A^{\varphi}) \neq 1$ if and only if $f(a_i) < f(a_j)$ for i and j such that i < j. And similarly it can be proved that $S_{n+1} \vdash A^{\varphi} \supset R'_n$. And by using the lemma 6, $\mathbf{LC} \vdash A^{\varphi} \supset R'_n$.

Corollary 11. If $S_n \supseteq L \supset S_{n+1}$, then $L \supset \subset S_{n+1}$.

Proof. Suppose that $S_{n+1} \not\supseteq L$. Then there is a formula A such that $L \vdash A$ but not that $S_{n+1} \vdash A$. Obviously $S_n \vdash A$. Hence by the theorem, $LC + A \supset \subset S_n$. This implies that $L \supset S_n$. This is contrary to the hypothesis.

Further we have the following

Theorem 12. If A is an I formula, the system LC+A of the theorem 4 is separable.

Proof. As is proved in [2], $LC+P_n$ is a separable axiomatization for S_n . Let A^{φ} be constructed as in the second proof of the theorem 4. Let B be the formula obtained from A^{φ} by substituting a_i 's by a_{n+2-i} . Since A is an I formula, B is also an I formula. And it is easily seen that $LC \vdash B \supset P_n$. And by the separability of LC, P_n has an I proof in LC+B and hence in LC+A. So the system LC+A is separable.

An example of such A is the following formula,

 $Q_n = ((a_0 \supset a_1) \supset b) \supset ((a_1 \supset a_2) \supset b) \supset \cdots \supset ((a_n \supset a_{n+1}) \supset b) \supset b,$

in which we associate to the right. It is easily seen that Q_n is interdeducible with R_n in *LI*. Hence $LI+Q_n$, instead of $LC+Q_n$, is sufficient for the axiomatization of S_n . These formulas R'_n and Q_n were suggested to the author while he was talking with S. Nagata. If we substitute a_{2m} 's by a_0 and a_{2m+1} 's by a_1 in Q_n , we obtain the formula Z. The theorem 4 has been proved independently by Nagata using the proof-theoretic method (unpablished).

References

[1] M. Hanazawa: A characterization of axiom schema playing the rôle of Tertium non Datur in intuitionistic logic. Proc. Japan Acad., 42, 1007-1010 (1966).

T. Hosoi

- [2] T. Hosoi: The separable axiomatization of the intermediate propositional systems S_n of Gödel. Proc. Japan Acad., 42, 1001-1006 (1966).
- [3] ——: On the axiomatic method and the algebraic method for dealing with propositional logics. (To appear).