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130 On Ranked Spaces and Linearity

By Masako WASHIHARA
Kyoto Industrial University

(Comm. by Kinjir6 KUNUGI, M.J.A., Sept. 12, 1967)

Let E be a linear space over the real or complex numbers,
where defined families of subsets 8B,(2=0,1,2, -..,) which satisfy
following conditions:

(A) For every V in B, 0e V (where 8= B,).
n=0

(B) For U,V in B there is a W in 8 such that WcUN V.

(a) For any U in B and for any integer n, there is an m such
that m>mn, and a V in B, such that VCU.

(b) Ee,.
For each point « in E, we shall call #+V a neighbourhood of
2 with rank %, when Ve®,. Then E is a ranked space [1] with
indicator @,. Furthermore, for any sequence {x,} in FE, we have
{limg,} o [1] if and only if {lim (x,—2)}20. In fact,if {limx,} >,
there exists a sequence of neighbourhoods of x, {v,(x)}, such that

0,@) =0+ Vs, V€ By, @y 1 00, 0,(2) 20014(3), T € 0,(0).

This implies that V,2V,,,, and therefore {lim(x,—2)}20. The
converse is also obvious.

Now, we set following three axioms concerning the relation
between the linear operations and the ranks of neighbourhoods.

(1) There exists a non-negative function ¢(2, #), defined for
2>0 and p#>0, such that llim #(2, p)=o0, and the following holds;

s oo

if UeR,, VeB,, WeB,, n<g¢(l, m), and U+ VW, then, there is
an n*>¢(l, m), and a W*e%,. such that U+ VCW*CW.

(2) There exists a non-negative function (2, #), defined for
2>0 and ¢>1 such that lim (2, )=oo for each fixed f, and the

following holds; let a be a scalar with |a|>1. If Ue%,, Ve3,,
aUcV, and n<+(m,|a|), then there is an n*>+(m,|a]) and a
V*e B, such that aUCV*C V.

(8) Let Ue®B and e U. Then for any =, thereis an m>n,
a VeB, and some positive p such that pxe VCU.

Moreover, we assume that every V in 8 is circled (i.e. if xe V
and |a|<1, then axe V).

When E satisfies all these axioms, we can assert that

I. if {lims,}22 and {limy,}>y, then {lim (x,+y.)}2>2+y.
II. if {limz,} >, then for any scalar 2, {lim iz,} > 2x.
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III. if lim2,=2 (where 2,, 2 are scalars), then for any « in E,
{lim 2,} 2 2.

I. means the continuity of addition. II. and III. mean the
continuity (more precisely, the separate continuity) of scalar multi-
plication.

Proof. Since {limz,}s2 if and only if {lim(x,—x)}>20, it
suffices to show that, respectively,

I'. if {lim«,} >0, and {limy,}>0, then {lim (x,+v.)} 0.

I, if {limg,}>0, then for any 1, {lim2x,}>0.

IIr’. if lim2,=0, then for any #, {lim 2,2} 3 0.

Proof of I'. From the hypothesis, there exist two sequences
of neighbourhoods of 0, {U,}, {V,}, such that

U,e%,,U0,2U0,,a,] o,2,eU,(n=1,2, ...,

V.e %ﬂn’ Va2 Vi, Ba T 0, Yy € Vn(n:]-y 2, ’y)
Taking U,, V,, E, respectively, as U, V, W, and applying (1), we get
an integer 7>g(a, B) and a W*eB, with U,+V,CW*. Then,
clearly, z,+y,c W* for any n. Since lim ¢(x,, 8,)=0c0, we can

choose an n,>1, such that g(a,,B,)>7r. As U+ Va,CU+V,
C W*, we can apply again axiom (1) to U,, V,, W*, and find a
V=, Ba,) and a Wyt e By, with U, +V, SWrCW*. It is clear
that v} >~ and 2,4y, e W for n>n,.

Continuing this process, we obtain sequences of integers, {n,},
{v¥}, and a sequence of sets {W}} such that n,<w,., v¥<v%&y
WieB,, W2 W, and x,+y,e W* when n,_,<n(i=1,2,-..,),
where n,=1. Now, put v, =7}, W,=W* whenn,_ <n<n;(t=1,2,-..)).
Then, W,e®B, , W,2W,.\, 7. | o, ¢, +¥y,€ Won=1,2,-..,). This
means that {lim (x,+.)} 2 0.

Proof of IT'. From the hypothesis, we have a sequence {U,}
such that

U.e8,,U0,2U,,a, ] oo, x,eU,.
If |2|<1, then ix,e U, (because U, is circled); therefore, we see
at once {lim ix,} 50. Now, suppose |[1|>1. Applying axiom (2) to
U,E,2 there is a B and a V*e Bp: with 2U,CV*. Since
lim y(a,, | 1[)=c0, we can choose an n,>1 such that («,, |2])>B¥.
:prlying again axiom (2) to U,, Vi*, and 1, there exist a
F=9(Aa, |2]) and a V;* e By with 2U, S VFC Vi

Continuing this process, we obtain sequences {n}, {8;}, {V:}

such that

W <Ny BF<Biy; Vi € By, VEV,L I,

and Aix,e V> for n>n,;_,.
Putting B,=p8}, V,=V¥ for n,_ <n<ni(i=1,2,...,) we have
VieBy,, Va2 Vs, Ba | o0, 23, € V,; namely, {limaz,}s 0.
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Proof of III'. First, by the axiom (3) (taking E as U, and 1
as n), there is an a,>1, a U,€®B,, and an ¢ >0 such that cxe U,.

Next, applying again (3) to U, .2, a,+1, we can find an a,>«,,
U,eB,, and an &>0 with egaxe U,SU,. Thus, we get sequences
{a;}, {U}, {e;} such that

a;<a;,, UeB,, U,2U;, and &g ---ecxe U,
As lim 2,=0, we can choose an increasing sequence of integers {n;}
which satisfies that |2,|<¢eeg, -+ ¢; for n>n,. Hence, 2,x¢ U, for
n=>n;.

Put B,=a;, V,=U,; when n,<n<n,.,(¢=0,1,2,.--,) where n,=1,
a,=0, U,=E. Then we have

VaeBs, Vo2 Vi, Ba ] o0, ,we V,; that is, {lim 2,2} 0.
This completes our proof.

When the space E satisfies the condition

(=) if Ue®B, VeB,, then UNnVeQB,, where n>max. (I, m),
axioms (1), (2), (8) can be replaced by simpler ones, (1'), (2), (3"):"

(1) there exists a function #(1, ¢t) such as ¢ in (1), and the
following holds; for Ue %, Ve®B,, there is an n>¢(l, m), and a
W e %, such that U+ VT W.

(2") there exists a function (2, ¢) such as  in (2), and the
following holds; for Ue®,, and for a scalar « with |a|>1, there
is an n>y(m, |a|) and a Ve, such that aUC V.

(8") for any integer %, and for any x in FE, there is an m>mn,
a Ve, and a p>0 such that pxe V.

As is easily seen, (1'), (2", (8’) are the consequences of (1), (2),
(8), respectively. On the other hand, if (x) is satisfied, (1), (2), (3)
follow from (17), (2"), (8"), respectively. For example, suppose (1'),
and let Ue®B, Ve, WeQ,, n<g(,m) and U+ VS W. By (1),
there is an n’'>¢(l, m) and a W’ such that U+ V< W’. On account
of (), WnW’e%,., where n*>max. (n,n), and obviously, U+ V
CSWnNwcw,

Examples. 1. Let @ be a countably normed space [2]; i.e. a
linear space where a sequence of compatible norms {|| ||.}a=12... IS
given, and convergence is defined as convergence with respect to
each norm. These norms are assumed monotonously increasing.

Now, let v(n; 0):{goe 0| l|¢||n<%} and let B, consist of only

one set v(n; 0).? Evidently, (A) holds. If m>n, then v(n; 0)2v(m; 0)
and therefore (x) is satisfied. It is easily verified that (1), (27, (3')

1) Moreover, axiom (B) is the direct consequence of (*), and if none of B, is
empty, axiom (a) follows from ().

2) We put Bo={@}. In examples 2, 3, too, we take the whole space as an
element of PBo.
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are fulfilled, if we put

o remin (3[4]. van-[2]

Thus @ satisfies all of our axioms.

Convergence of a sequence in @ as a ranked space is equivalent
to the usual convergence; we have {lim ¢;} 50, if and only if || ¢;||,
—0 for every mn. In fact, if {lim ¢,} 50, there is a sequence {V;}
such that

VieB,, Vi Vi, a; 1 o, pe V..
For given n and for given ¢>0, we can find some %, such that,
1
<&

k2

V=v(a;;0). When i>1, ¢; € V,, consequently, ||¢;|[,

if ¢>1,, then a;>n and

Since V; €%, ,

<[1¢sllay <L <e. This means that ||, l,—0 for every n.

° S,
Conversely, suppose that || ¢;||,—0 for any n. Then we can choose
a sequence of integers {¢,} such that

tniuni [ oilla <t for i20,0=0,1,2, -+

Putting a;=n, V,=v(n; 0), when ¢,<:<%,.,(n=0,1,2, .--,), we have
Vi € %a,p VzQ Vi+1) Q; T o0, ;€ Vi; i-e- {lim gD'»} 3 0'
This completes our proof.
2. L. Schwartz defined the space 9 [3], consisting of all infinitely
differentiable functions with compact carrier, and convergence in it.
Now, let

v(n, K; 0)={<p € D|car. o[ — K, K], max. sup. ]go""(x)l<%}
0<j<n—1 ©

and let B, be the collection of all v(n, K;0), where K is arbitrary
positive number.

Obviously (A) holds. Moreover, it is easily seen that, if n<m
and K<L, then v(m, K; 0)Cv(n, L; 0), and that v(n,, K;; 0) N v(n,, K,; 0)
=v(nw, K; 0), where n=max. (n, n,), K=min. (K, K,). Hence (x)
holds. Similarly as for @, we can see that (1’), (2), (3') are also

fulfilled, putting g ¢(2, ¢£)=min, ([ﬁ—], [g:l) and (4, p)=[%].

The convergence in 9 as a ranked space is equivalent to that L.
Schwartz defined; we have {lim ¢;} 3 0 if and only if there exists some
K such that car. ¢, [ — K, K] for every 4, and for each fixed n, ¢{™(x)
(and ¢;() itself) converges to 0 uniformly in [-K, K.

3. Let @ be a countably normed space, and @ be its dual (i.e.
linear space consisting of all continuous linear functionals on @).
It is known that @ is the union of @, where @, is the completion
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of @ with respect to the norm || |[|,; in other words, for any f in
@', there is some p such that || f||,<co (where || f ||,=sup. | f(¢)]).
liellp<1

Moreover, since || [[.<[| [lats I| (221 [5sie
Now, let v(n, p; 0):{ feayl | f||;<_:b..}, and let B, be the col-

lection of v(m, p;0), p=1,2, ..., It is clear that, if n<m and p<q,
then v(m, p; 0)Cv(n, ¢; 0). Furthermore, we remark that, if v(m, p;0)
Co(n, q; 0), then necessarily p<q. In fact, suppose p>q. Then
@,2@,. Since we can assume that any two norms || ||, and || ||,
are not equivalent, and therefore || ||, and || ||, are not equivalent,
we have @,220,. On the other hand, from wv(m, p;0)Sv(n, q;0),

@;gd){,<because o,= G v(m, p; 0) and @,= G v(n, q; 0)). This is a
m=1 n=1

contradiction.
It is easily verified that (A), (B), (a) holds.

Let us show that (1) is satisfied, putting ¢(1, ¢)=min. (I:%], l:—g—:D

Let U=wv(l, p; 0), V=v(m, q; 0), W=v(n, r; 0), and suppose
. l m

U+ VS W, n<min. ([E:', [;])

Then UC W, VW, and by the remark above, we have p<r, ¢<7r.

Putting »* =max.(p, q), n* :min.<[-é—:|, [%«]), and W*=v(n*,r*;0),

we have W*C W, because of n*>n and r*<r. Moreover, let fe U
and ge V, then

N +glb<l Fll+lgllzl fll+g II&S%Jr

Hence U+ VCW.

Similarly, we can show that (2) and (8) also hold.

The convergence in @' as a ranked space is equivalent to the
strong convergence; we have {lim f;} 30 if and only if, there exists
some p with f; e @, for every ¢, and || f;||;—0. In fact, if {lim f;} 20,
there is a sequence {V}, such that

VieB,, ViV, a;] oo, fie V.
Let V;=v(a;,0;;0). From V;2V,,,, we have p;>p,,,. Therefore,

for every i,|!f,-||;1£\|f¢\|p,~<$. This means that fie®,, and

<

I+

1
m

2

| fill3,—0. Conversely, if || f;||;—0 for some p, then, we can show
that {lim f;} 50, in the similar way as for the convergence in @,
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