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1. Introduction. Let be a complex Hi.lbert space with norm

II II and p be a non-negative measure on R- (-c, c) which is
finite on every bounded Borel set. We denote by L(R; (C)) L the
set of all (C)-valued strongly p-measurable functions f(t) on R
satisfying the condition II f(t)II dp(t)< c. For each f(t) e L we

define its real and complex Hilbert transforms Hf and
with respect to p as follows (if the righ members exist)"

Hf(x)-p.v. "I f(t)dp(t)1

s- lim f --1. f(t)dp(t) (x e R),
It-l>

1 f(t)dp(t) (im z:/:0)( 2 ,[f(z)- t--z
where the integrals are taken in the sense of Bochner and s-lim
means the limit in the strong topology of 22. Clearly q(,[f(z)
exists for all z(im z:/:0) and it is a (C)-valued analytic function in
the upper and lower half-planes. We are concerned with the behavior
of ,[f(z) as z approaches to R from upper or lower half-plane.
At first we note some measure theoretic points. Since f(t)e L, is
a strong limit of a sequence of step functions at p-a.e. (almost
every) t e R, there exists a (closed) separable subspace (C) of (C) such
that f(t)e (C) for p-a.e, t e R. Therefore we may assume without
loss of generality that (C) itself is separable. We put p- P0 +
where P0 is the singular part of p and p is the absolutely continuous
part of p (with density p’(t)). Then f(t)p’(t) is strongly Lebesgue
measurable, and by the standard argument we can see that for a.e.

I+ I+t e R II f(s)p’(s)-f(t)p’(t)II ds-o(h) and II f(s)II dpo(s)-o(h) as
t--h t--h

h 0. The set of all such t is denoted by A,. Clearly (,) is a

null set a set of Lebesgue measure 0) and s lim 1I f(t)dp(t)
h--,O h J

f(t)p’(t) for each t e 4,.
Now our result reads as follows:
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Theorem 1. Let f(t) e Lp(R; ). Then
(i) Hp[f(x) exists for a.e. x e R,
(ii) s lim [f (x +__ ie) [f (x + iO) exists whenever

s$0

H,[f(x) exists and x 4,. For such x there holds
3 (f(x+iO)-Hf(x)+zif(x)p’(x),

(iii) in particular for a.e. x R, [f(x+iO) exists and (3)
holds.

We can rewrite the above theorem in a slightly different form.
Let V(R; (C))-V be the set of all (C)-valued functions on R which
are of strongly bounded variation. We can also define the real and
complex Hilbert transforms of v(t) e V as follows (if the right
members exist):

4 ) HEv(x)-p.v. i -dv(t),

dr(t) (im z :/: 0),15 d(v(z)-
t-z

where the integrals are taken in the sense of Riemann-Stieltjes
integral. q([v(z) is a 2)-valued analytic function in the upper and
lower half-planes. Concerned with the behavior of ([v](z) near
the real line, we may also assume that (C) is separable, since v(t)e V
is separably-valued. We put a(t)-total variation of v(t) in (-c, t).
Then a(t)is a non-decreasing function on R with finite variation
a(oo) and v(t) is strongly absolutely continuous with respect to a(t)
(in fact II v(t)-v(s)II<_a(t)-a(s) for any s<_t). Hence by the theorem
of Gelfand [4 or Dunford-Pettis [3, there exists a (C)-valued
strongly a-measurable function g(t) on R such that II g(t)I1-1 and

v(t)-v(a)-[g(s)ga(s) for a-a.e, t eR. Since the integral is taken
in the sense of Bochner, v(t) is strongly differentiable at a.e. t e R
and v’(t)-g(t)o’(t). If t e4-4,, the total variation wt(h)of
wt(h)-v(t/h)-v(t)-v’(t)h in (-h,h) is o(h) as h0. Clearly

f g(s) II da(s)-a(c)< c g e L(R; (C)). v_ (z)and There also hold

=g](z) and Hv(x)- Hg(x). Therefore Theorem 1 implies
Theorem 2. Let v(t) e V(R; (C)). Then
(i) Hv(x) exists for a.e. x e R,
(ii) s-limC(v(x+_ie)=_q(v(x+i0) exists whenever Hv(x)

o
exists and x e 4. For such x there holds
( 6 ) (v(x+/-iO)=H[v(x)+__7iv’(x),

(iii) in paticular for a.e. x eR, [v(x+iO) exists and (6)
holds.

We will give the proof of Theorem i in the next section. The
method is quite the same as the elegant method due to Calder6n
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and Zygmund 2. Finally we give some comments on the problem.
The result stated above has been known for many years in the
scalar case and may be known in the vector case, but no straight-
forward proof has appeared in the litterature. On the other hand,
it can not be generalized to the Banach space (even if we assume
reflexivity) since the result is closely connected with the Fourier
transform method (cf. 6).

2. Proof of Theorem 1. Let I be any finite open interval.
To prove (i), it is sufficient to show that H,f(x) exists for a.e.
x e I. With no loss of generality we may assume that f()=0 for
eI. Let be a a-field of BorelsetsinR. We denote by AI the
Lebesque measure of A e , and by I(x, r) the open interval

x/). We put for A e 3 a(A)- .t11 f() II dp() and v(A)- tf()dP(t).
Obviously a is a n0n-negative finite measure on R and v is a
valued measure (the integral is taken in the sense of Bochner).
Clearly v(A) < a(A).

Fix , 01. Let A e be any set such that AI(x, r) and
IA[>clI(x,r) l. Then. lima(A)/tAI-a’(x)-IIf(x)llp’(x) and (x)

r$0

sup a(A)/I A c for a.e. x e I. Hereafter we fix a so that 0
r>0

1/2. We denote by e (resp. e,) a support of the singular part of
a (resp. p). We may assume that ee,.

Now it is sufficient to prove the following"
For any 20 there exists an A e such that
(i)
(ii) HoOfS(x) exists for a.e. x e I A.

For any y> 0 we put E- {x e I; y < (x)g c}. Suppose , 0< < 1/2,
is given. Then there exists y> 0 such that E I<r]/2. Let A be
an open set such that i) E A I, ii) eo IA, and iii) A <2/2.

We consider the non-negative measure (E)- dr, E e 3.
AnE

Clearly we have

lim (I(x, r))_ l!m 1 I dr-0 for a.e. x e A.
As an open set A is written as a disjoint sum of at most

denumerable number of open intervals" A-XI. Let t be the
center of h. We put A- [J I where I-(t-]h I, t+lh ]). Then
A1 is an open set and IA1

Take any I. At least one of its end points, say a, is in I, and
a e A implies a e E. Hence (a)_<y. Since c< 1/2, we have a(I)
gylIl for any k. Furthermore because of ii)a is absolutely
continuous on I A and because of i) 0_< a’(x) <_ y for a.e. x e I A.

Put
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teI.
Then we have I1 h(t) ll <_y for t e L

After these observations we consider the behavior of
1 f(t)dp(t)H;Ef](m)-

,,-,,>, t-----x
for x e I A. Obviously

Ho[f](x)_ I i
I-I> $--X

.h(t)dt

where

+ 1 f(t)dp(t)-

J(x, e) + J(x, ) + J(x, e),

J (x, f h(t)dt,
It-l> t--X

i v(h)dt}

Since h(t)e L(R; 22), the application of classical method of Hilbert
transform (see [6]) (combined with the lemma in this section) will
yield the existence of s-lim J,(x, e)=J,(x, 0) at a.e. x e R.

$0

Next we consider J.. Since x e Ig A (hence x e I) and I I(x, )
:/:6 in X,, we have (1/2) 1h1< and It-xl<(1/2) lh]+e. Hence
for anytehlt-xl<_[t-t]+lt-xl<3e, i.e. hI(x, 3). Therefore
we have _

2__y_y I dt--.O for a.e. x e A, as I O.

Finally we consider Js. Put
0 if h I(x, ) ,

a(x, e)-
i if h n I(x, e)- .

a(x, e) is non-decreasing in e>0 for fixed k and x.
xeIA

J(x, )- , a(x, e)g(x)

We have for

where
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gk(x)

v(h)dt}.
Since

we have

Hence the series Jdx, e)-Va(x, e)g(x) is majorized term by term
by the series XG(x). Thus, if we establish the convergence of
X(x) for a.e. x e IA, then the Lebesgue theorem for l() will
yield the existence of Jdx, e)and also the existence of s-lim Jdx, e)

$0

Jdx, 0) for a.e. x e IA. However, since

(x)dx< 2 I a(I)dx

-4[ 1x’---’,,’I a(I)-4a(I),
we have

I{= (x)}dx- t I(x)dx

k=l

This implies the convergence of X(x) for a.e. x eIAA. Thus
s-lim H[f](x)=H[f](x) exists for a.e. x e IA A and the proof of

e$0

(i) is completed.
The following Lemma will complete the proof of (ii):
Lemma. Let (1+ t )-f(t) e L(R; ) and x e ,. Then

s ,l t x)+e f(t)dp(t)-f(x)p’(x),

(ii) s-lim t-x },o t- (t-)+s
f(t)gp(t)-g[f() -0.

he roof of this lemma is quite similar to that in the classical
case (see [6).

1) If tl and xA (hence xI), then Itk--xl_ ]I]:>2[t--tI. Hence
1

2) Here we have applied Lebesgue’s monotone convergence theorem.
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