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1o Introduction. Consider the Navier-Stokes equation
(1) u,+(u.grad)u=lu-Vp+f, divu=0, xeG, 0<t<T,
and the condition of adherence at the boundary
(2) u=0 on the boundary of G.
Here G is a connected component of exteriors (or interiors) of a
bounded hypersurface of class C, u and f are 3-dimensional real
vector functions of x and t, and p is a scalar function of x and t.
We are mainly concerned with the question whether a nonconstant
flow of incompressible fluid, subject to the Navier-Stokes equation
(1) with f=0 and the condition (2) of adherence at the boundary,
can ever come to rest in a finite time on some potion of G. Before
stating our results, we shall define function spaces, and fix our
notations. For any open set Q in R, W,(Q) (k>O, l<p<c) is
the set of all complex-valued vector functions in L(Q) for which
listribution derivatives of up to order k lie in L(Q). W,(Q)
(k>0) is the set of all distributions u such that I(u, ) I<C ]1 I1
for in C(Q), C being a positive constant, where ]]ll is the
L-norm of . Wo(Q) (k=0, _+1,...) is the set of all distribution
u on Q which coincide on some neighborhood of each point of Q
with elements of W,(Q). The set of all 3-dimensional real vector
functions p such that e C’(G), and div =0, is denoted by C,,(G).
Let L,=L,(G) be the closure of C’,(G) in L(G). Let P be the
orthogonal projection from L(G) onto L. By A we denote the
Friedrichs extension of the symmetric operator -Pz/ in L defined
for every u such that u e C(G) C(G), div u=0, and u=0 on the
boundary of G, G being the closure of G. By Xr we denote the
set of all u in D(Ar) with the norm II u IIxr-II Aru II + II u II, D(Ar)
being the domain of Ar, where 7 is any number with 3/471.
We let X=X,/. Here I" I[ is the norm of the Hilbert space L(G)
with the scalar product (., .). Let H), Ho,(G) be the completion
of the set C,(G) of all solenoidal (divu=0) functions in C with
the norm [] Vu + I[ u [I. our results are as follows.
1) <u, > denotes the value of the functional u at .
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Theorem 1. Let there exists an analytic extension f(z)=f(., z)
of t’(t)=f(., t) such that f(z) is an L-valued holomorphic function
of z in some neighbourhood 2 of (0, T). Let u be a solution of (1),
(2) such that u(., t) is an H,,-valued continuous function of t in
(0, T). If f(x, z) is analytic in (x, z) in some nonempty open subset
Go 9 of G [2, then there exists an analytic (in x and t) function
u*(x, t) on Go (0, T) such that for each t in (0, T) u*(x, t)=u(x, t),
x e Go, after a correction on a null set of the space R.

Theorem 2. Let u be a solution of (1), (2) with f=0 such
that u(., t) is an H,.-valued continuous function of t in (0, T).
If there exist a nonempty open set G in G and a t with OtT
such that u(x, t)=0, x e G, then u vanishes identically in G (0, T).

Here by a solution u of (1), (2), we mean a locally square sum-
mable function u(x, t) on G (0, T) with the following properties:

(i) u(x, t) is weakly divergent free, i.e. (u, gradw)dt=O for all
scalar function o) e C(G (0, T)), (ii) / {(u, )) + (u, z/P) + (u, u. grad)

+ (f,)}dt=0 for all C vectors which are solenoidal and have com-
pact support in G (0, T).

It is to be noted that the above theorems give partial answers
to Serrin’s conjectures [1.

2. Lemmas for the proof ot the theorems. Lemma 1. (a)
D(A)= H,,, and It Au I1 II Vu II for u e D(A). (b) For any
bounded open set E in G, its closure being contained in G, there
exists a constant C C(E) such that ess. sup el v(x) <- C II v Ix, v e X.

For the proof see Fujita-Kato [2.
Lemma 2. There exists an analytic extension u(z)=u(., z) of

u(t)=u(., t) (t e (0, T)) such that u(z) is an X-valued holomorphic
function of z in some neighbourhood U, contained in 2, of (0, T)
in the complex plane, satisfying the equation (u, )/3z (u, A)
-((u.grad)u, )+(f, p) for in C,(G) and z in U.

An outline of the proof of Lemma 2 will be given in section 4.
:3. Proof ot Theorem 1. We set v(x, z) rot u(x, z)(= rot u(x, z)),

u(x, , y)= u(x, + i),v(x, , 7])= v(x, + i]), and f(x, , ])= f(x, + i),
x e G, + i] e U. Then for any in C?(G) (u(., , ]), ), and (v(., $, ]), )
are harmonic functions of and ], since u(., z), and v(., z) are L-
valued holomorphic functions of z. Hence we have
( 3 ) ((u, + o,
( 4 ) ((.v, + 0
for any vector in C:(Go) and any scalar in C(Uo), where
U0 {(, 7]); + ir] e U} and ((., .)) is the scalar product in L(Go Uo).
Using the relation rot rot grad div- z, we have (u, Z) (v, rot ),

e C:(Go), since (u, grad div )=0 in virtue of the fact that u e L.
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Consequently,
( 5 ((u, z/))= -((v, rot ))
for o in C:(Go) and @ in C:(Uo). On the other hand, noting that
rot e L for o e C0(G0), we have, by Lemma 2, 9(u, rot )/9

(u, z/rot o)-((u. grad)u, rot )+ (f, rot ), (, ]) e U0, so that
( 6 ((v, [/+z]o)) (((u. grad)u, rot o)) + ((rot f, )) 0
for any in C’(Go) and any @ in C(Uo). By adding (3)to (5), and
(4) to (6), we have

((u, [/3 +/3] + z/])) + ((v, rot o)) 0
and

((v, [/3+/2+z/+/339))-(((u.grad)u, rot @))
+ ((rot f, )) 0,

for eCo(G0), and @eC:(Uo). Since the totality of finite sums, o@ with o e C:(Go) and @ e C0(U0) is dense in C:(Go x Uo) in
the topology of D(Gox Uo) (see L. Schwartz [3] p. 107), we obtain

( 7 ((u, [3l]+/32+zl-]))+((v, rot ))-0,

( 8 ((v, [/+/]+zl+/-]O))-(([u.gradu, rot O))
+ ((rot f, ))- 0

for any P in Co(Gox U0). Let K=Ex F be any bounded open set,
its closure being contained in Go x U0. Then we shall show that
( 9 u e W,/(K), v e W,/(K).
Since u(., z) is an X-valued, and so H,,-valued, holomorphic function
of z, we see that v(., z) is an L(E)-valued holomorphic function of
z in view of rot u=v, and that u(., z) is an L(E)-valued continuous
function of z in view of the fact that ess. supe u(x, z) [< C II u<o, z) [ix
for some constant C, independent of z, by Lemma 1. Hence v e L(K)
and u e L(K). Since

II (u.grad)ullL<=><(ess. sup u )[ TU ]l <(ess. sup ul)[[
by Lemma 1, we have (u.grad)u c L(K), rom which i follows ha
ro f-ro (u. grad)u c W-,(K). We hve, by (8), (/+/3+ z/-

/) v e W,(K). Hence, applying the interior regularity theorem
(I.R. THM.) of weak solutions of elliptic equations, we have

1,9.v e Wo (K), so that (/+/]+z /)u-rot v e Lo(K) by (8).
2,2 1.2Hence u e W;o(K). By Sobolevs lemma, v e Wo(K) implies

ur,0/ By the arbitrariness ofv e -o-](. Also we have u e ,,oo .
the choice of K, v La(K) and u e W,/a(K). Since

[[ (u. grad)u IIL0,<> <(ess. sup u I) II u
we have (u. grad)u e L/(K), and so rot f-rot (u. grad)u e Wio’(K).
Hence applying the I. R. THM. to Eq. (7), and to Eq. (8) once more,

ur,o/( and u e ur.o/ By the arbitrariness of thewe have v e loc \. loc \ ],

choice of K, we have (9). Next we shall show that if u e W+,/(K)
and v e W,/(K), then u e W+,/(K) and v e W’+,/(K), k being
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a positive integer. Let D
Then we have D[(u. grad)u (Du grad)u+<C(Du.grad)D-u
for a a+a+ak, C being a constant independent of u. Since

(Du grad)u 0()] Du o u,0(

by the H6lder inequality and Sobolev’s lemma, we have (Du.grad)u
L/(K). On the other hand, since

[ (D’u’grad)D-u II0<> C(ess. sup {Du I)[I u
for <a, C being a constant independent of u, we have
(Du.grad)D-u L/(K). Here we used the act that u W+,/(K)
implies D’ueL=(K), <a, by Sobolev’s lemma. Hence (u.grad)u
W,/(K), so that rot f-rot ((u. grad)u) e W-,/(K). Hence

applying the I. R. THM. to Eq. (7), and to Eq. (8), we have
v W+,/(K) and u W+,/a(K). Hence u W+,/(K) and
v W’/(K) for arbitrary positive integer k, by (9). By Sobolev’s
lemma there exist u* e C=(K), v* e C=(K) such that u*-u, and
v*-v after a correction on a null set of the space . Since
rot ((u.grad)u)-(u.grad) rot u-(=(rot u).u,/), we see, by (7)
and (8), that a vector (u*, v*) satisfies a non-linear analytic elliptic
system /+/q+J]u* +rot v*-0, /+/+2+/]v*
-(u*.grad)v*-(:v:.3u/3x)-rot f-O in G0x U0. Applying the
theorem on the analyticity of solutions of a non-linear analytic elliptic
system (see Morrey [5), we see that (u*, v*) is analytic in x,
in the interior of G0x U0. Since (u(. z), ) and (v(.,z), )are
analytic in z for in C:(Go), we have (u(.,
and (v(., , 0), )-(v*(., , 0), ). Hence for each t in (0, T) u(x, t)
=u*(x, t, 0) and v(x, t)-v*(x, t, 0), x e Go, after a correction on
null set of the space R. This shows that u (x, t) and v(x, t) are
analytic in x and t, xeG0, te(0, T). Theorem 1 is thus proved.

Proof of Theorem
(x e G, t e (0, T)) by Theorem 1, the assumption u(x, t)-O, x e G,
implies that u(x, t)-O, x e G, so that v(x, t)-O, x e G. Since v
satisfies the equation 3v/at-2v-rot ((u.grad)u), we have v(x, t,)-O,
and so rot u(x, t)-O, x e G. Since ut(x, t) e 0,(G) and div ut(x, t) 0
by the H3,(G)-valued analyticity of u(., t) (see Lemma 2), we have
u(x, t) O, x e G. Hence vt(x, t,) 2v(x, t,)- rot ((u. ad)u). (x, t)
-rot ((u.grad)u).(x, t)-O, x e G. Taking into account that u(x, t)

0,(G) and div utt(x, t)-O, we have utt(x, t)-0 x e G. Applying
the same argument, we have (/t)u(x, t,)-O, x eG, k-1,2, ....
For any in C:(G) (u(., t), ) has a zero of infinite order at t. By
the analyticity in t of (u(., t), ), (u(., t), )-0 for any in C(G)
and any t in (0, T), showing that u(x, t) vanishes identically on
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G (0, T). Theorem 2 is thus proved.
4. Proof of Lemma 2.) In this section we shall outline the

proof of Lemma 2. At first we note that u(t) is an X-valued con-
tinuous function of t in (0, T), satisfying the equation

u(t)- exp (-tA)u(To)+ exp (-(t-s)){f(s)+Fu(s)}ds,
o

To< t < T, where To is any number in (0, T), and F[v] P((v. grad)v);
see Fujita-Kato [2]. Let s be an arbitrary number with 0<e< T/2,
and 0 be a number such that the set {z; e<Re z< T-e, ]z-el cos 0

<Re z-e} is contained in tO. We set S(e, ; To)={z; To<Re z< To+,
z- To cos 0 <Re z- To}. Let {u,(z; To); N= 1, 2, ..., k 1, 2, } be
a sequence of X-valued functions defined through u,0(z; To)=0 and
UN,k(Z; To) exp (z To)AN)u( To)

+1 exp(-(z-5)A){f(5)+F[u,_(5)]}dS, k>l, ze S(e, ; To),

the path 7 of integration being the segment _To, z], where

A- dE(), E()being the spectral family associated with A.
Then there exists a -(e)>0, independent of N, such that for
any To with < To< T u,(z; To) are X-valued holomorphic functions
of z, converging uniformly on S(e, 3; To) to a limit u(z; To) as
k-c in the norm of X. Hence u(z; To) are X-valued holomorphic
(continuous) functions of z in the interior of S(e, ; To) (on S(e, ; To)),
satisfying the equation

u(z; To) exp zA)u(To) + fr exp(- (z- )A){f() +Fu(; To)]}g.

It is easy to see that uu(z; To) converges uniformly on S(e, ; To) to
a limit u=(z; To) as N-c in the norm of X. This limit u=(z; To)
satisfies the equation

u(z; To)-exp (-zA)u(To)/ I exp (-(z-)A){f()+Fu(; To)}d.

In particular u=(t; To) satisfies the equation

(10) u(t; To)-exp(-tA)u(To)+ ToeXp (-(t-s)A){(s)+Fu(s)_}ds
for t in To, To+3). It is known that Eq. (10)has a unique solution
within the class C([T0, To+/); X), and that u(t) is an X-valued
continuous function of t in ITo, To+3), satisfying Eq. (10). Hence
u(t; To) u(t) for t in To, T0+ ), so that u(z; To)= u(z; T) for
z e S(e, ; To) S(’, ’; T). We define U= S(e, ; To) (0<< T/2,
0< To< T) and (z)=u(z; To) for z in S(e,/; To). Then (z) is an
X-valued holomorphic function, defined in U, with desired properties.
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