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3. An Extension of Beurling’s Theorem. 11

By Zenjiro KurAMOCHI
Mathematical Institute, Hokkaido University
(Comm. by Kinjird KUNUGI, M.J.A., Jan. 12, 1968)

This article is the continuation of the previous paper of the same
title. We shall prove the following

Lemma 5. Let F be a set of positive capacity in B and suppose
Jor any point pe F N BY there exists a contact set A(p) of p such
that lim .0, (»N(2, p)>0. Let {G,} be a decreasing sequence of

domains im R — R, such that G,>D(G,, N v,(p)N 4(p)), where
N
G,,2>p and m and G, , depend on p and G,. Then
o({G.}, 2)>0.

Put l-‘sz[p € va: S %llm Gy’ 'pnv”(p)nd(p)N(z p)d8> f:/:}. Then
N n=co
oR, 0

by Lemma 1.3) F=BY +21" Now since BY is an F, set of ca-

pacity zero, there exists a number l, and a closed set F’ of positive
capacity in F such (F'N B)cI',. Hence there exists a positive

mass distribution g on F’ N BY such that V(z) = SN(z,p)d;z(p) and V()

<1in B—Ri. 0,V@)=o0,(| N p)i()) 2 [lime, 0 a0, N, 2) D)

= [ 100, NGz, D)D) For any mand | 2, Via)ds 2 2 (dpcp) >0.

3Ry 0

Let 0,(k)=w(G,,?, R—R,). Then by the maximum principle ®,(z)
=4,V(?). Let n—oo. Then
o({G,}, )= lim 4 V(2)>0.
Let w= f(?):2€ R be an analytic function whose values fall on

a basic surface R. Suppose N-Martin’s topology is defined in R—R,.
Let pe BY and let 4(p) be a contact set of pe BY. Put

M(f(e)= N f(Go) and 4(f(p))= NA4p) N Go).
Then M(f(p))c4(f(p)), where {G.} runs over all domains G, such
N
that G, > p and the closure is taken with respect to the topology of R.

Let & be a closed set in R. We suppose § is contained in a
local parameter disc |w|<1 and let A(r) be the area of R (not of R)

on E[w: dist (w, F)<r]1=%,. We suppose ¥ in |w ]<l. If & is one

point @ and lim ‘t("') < oo, a is called an ordinary point. A. Beurling
0

and M. Tsuji proved the following
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Theorem (B). (A. Beurling)[1]. Let w=f(2) be a non const.
analytic function in |z2|<1l and we w-Riemann sphere. Suppose
the speherical area of the covering surface gemerated by w= f(2)
ts finite. Let a be an ordinary point. Then the set F' of e’ such
that linll f(rey=a is a set of capacity zero.

Theorem (T). (M. Tsuji) [2]. Let w=f(z)be an analytic func-
tion in |z2|<l: we w-Riemann sphere. Suppose there exist three
values such that f(z) takes these values only a finite number of
times in |2|<1l., Let F be a set of positive capacity on |z|=1
such that for any e’ e F there exists a curve v terminating at e*
and that f(z) tends a as z tends ¢’ along v. If a is an ordinary
point, then f(z)=a.

We shall prove

Theorem (K). Let w=f(z) be a non const. analytic function
from R into . R Let & be a closed set contained in a local parameter

dise |w|<1 and  is contained in |w |<%, Suppose TmA®) < oo
r—0 P

Then F=E[peB: A(f(p)) CF] is a set of capacity zero.
Remark. 1) [3]. In the previous paper we proved F'=E[pe BY:
M(f(p)) = F] is a set of capacity zero under the same condition of
Theorem (K).
(2). By Lemma 3) a curve terminating at e¢? is a contact set
of ¢ and BY is a set of capacity zero. Hence (K) implies (T).

(8). The condition limé@<oo is not a condition for the set
r=0 71

%, for instance §F may be a set of positive areal measure. The
condition only means the part of R over §, is small so that (K) is
valid. We constructed [4] a covering surface R over the w-plane with
finite area such that R has a singular point p e BY with the follow-
ing properties: 1) w(p, 2)>0, lim f(v,(p))= one point. This example
shows that even when F is one point, some condition 1S necessary
for the validity of (K).

Proof of Theorem (K). Let {R,} be an exhaustion of R with
compact relative boundary oR,. We suppose N-Martin’s topology is
defined in R—R,. Let g;=E[w: dist(w, F)<r;] and let A(r;) be the
area of the image f~'(,%,) of ¥,,. By h_m—A(T'r)< oo, there exists a

=0 r

sequence 7, >7,, - -+ such thatA(—;"")gK< 00:1=0, and lim r;=0, Also

i =00
i 2

by A(r;)—0 as i—oo, we can find a number ¢, and a compact dist

I'yin R,— f~%(g9;). We can suppose loss of generality i?(‘;"—*) <K and

T
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R—fXg)>I, for 120, Put G,=f"(g,) and G;= f~(g:) N (BR—R,) for
t=1. By the definition of 4(f(p)), for any % there exists a domain
N
G(p) such that I(v}(p) 5 p and (4(p) N G(p)) < f~(9;) for any pe F. Now
R—R,>v,(p) > p (where n depends on 7). Put G'(p)=(R—R,) N G(p),
N

then G'(p) > p and (G'(P) N 4(p) N V(D)) C Gi.

Assume F' 1is of positive capacity. Then by Lemma 5 w({G,},
2, R—R)>0. By I'hc R, we have by the Dirichlet principle and
maximum principle
o({G:}, 2, R—I')z0({G}, 2, R—R)>0 and oo >D(w{G:},2, R—Ry)) (1)

=zD(w({G3}, 2, R—1")))>0.

We shall show G;,; and CG;(j=1) are Dirichlet-disjoint. In fact,
dist (dg;, 8g;.,;)>0, 0g;, and dg,,; are compact in the w-local parameter
disc. We can construct domains 2, and 2, such that g, 52, 52, D¢,
dist (092,, 02,)>0 and 02,(1=1, 2) is a finite number of analytic curves.
Hence we can define a C,-function V'(w) such that V’(w) is harmonic

in 0—Q, Viw)=1 in 2, V'(w)=0 in CQ, and l%V’(w)‘gL,
L Vw)|SL: L<eo and w=utiv. Put V'E@)=V(fw) in G.
Then V'()=0 in G,N Cf~(g:), V'()=1in f(¢gis;) and D(V'(2))
<KL*ri<oo. Let w(z) be a C,-function in R(7=1,j=1) such that
@(2)=0 in R,;, w(z) is harmonic in R;,;—R; and w(z)=1 in (R—R,,;).
Then since 0R; N 0R;,;=0, D(w(z))<oco. Put V(z)= min (V'(z), w(z)).
Then V(z) is also a C,-function in G,= f~%(g,) such that V(z)=0
G—Gi, V()=1o0n G (=(R—Riy;) N f7(9:+5)) and D(V(2)) =2(D(V'(2))

+D(w(R))<L'<oo, because 0 V(z) } < a‘"(z) ’3 V'(2) and

l oV(z) ’ < ‘ 0w(z) ‘ L \3V'(z) ) Hence Gis and CG,; are Dirichlet-

dlSJOlnt and clearly CG, and G, ; are Dirichlet-disjoint. Hence by (1)
o({G.}, 2, G)=0({G,}, 2, R—I') and oo >L'=D(w({G,}, 2, Go))
_ZD((D({G,,}, 2, R—F0)>0.

The domain G,= f~*(g,) is non compact and consists of enumerably
infinite number of components. Put U(z)=w({G,}, 2, G,). Then U(z)
is harmonic in G,. Let G’ be a compact component of G,. Then
U(z) is harmonic in G’ and U(z)=0 on 0G’ and U(z)=0 in G’. Hence
by D(U(z)) >0, there exists at least one component G of G, such that
°°>G°D(U(z))>0 and U(z) is non const. in G. In the following we

fix GG and consider U(z) in G. By U(?)>0 in G we see G contains
not empty components of f~'(g;) for ¢=1. Since CG; and G,.; are

Dirichlet-disjoint we have by Lemma 4 S %U(z)ds lOasM 11

AV y—G;
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for any given G; and S iU(z)olszD(U(z)):a for a regular level
Wy on
curve 0V,

Vu=E[zeG: Uiz)>M]. (2)
Let UX(z) be a harmonic function in (B, N G)— V,, such that U¥(z)=0

on 6G, UX(z)=M on 3V, N R,,,.aa_n U¥(2)=0 on (G N 4R,)—Vy. Then

U¥(z)=>U(z) in CV, N G as n—oo and D(U¥(z))—MD(U(z)) as n—oo,

Suppose 0V, is regular, then S a—an U(z)ds=D(U(z))=a and by
vy

lim S 9 Uk(z)ds= S 9 U(z)ds we can find for any given

" oV NGN R, 0 W yneg n

€>0 and given number 7 a number M(¢) and a number n,(e, ¢, M(2))>1%

such that

%Uﬁ:’(z)ds_z_a—s for n=n(e, 1, M). (3)

WV yNR,NG;

Fix ¢ and M at present and put
or~wn= || 1r@{(Lve)+(2 @) sy ana
rgpne
D, cvanR)= || 1r@f(luser
U nGACYyNER,

(@ U;:f(z)> } dedy.

Then these are independent to change of local parameters. By
D(U(z))<co we can find a number » such that D(U(z)) over R—R,
G

<§. Next since f(z) is analytic in R, the area of f~'(g,) in R,—0

as k—oo, We can find a number k(¢) such that D(U(z)) over
[ N R, < % Hence we can find a number k(e) such that D(U(z))

over f~g,)<e. Fix such k(¢). On the other hand, by Schwarz’s
inequality
ps=@rs || 17@raxdy DUEYS A< Krie for kzk(e) and

F~Ugp) NG

D(fg:.))=V'Ke 7. Put
b, cvo= || r@{(Lue) <ay 06 e

CvynF~Hapng
Then by Uz (2)=U(2), D(f7(gx); CVu N R,)—D(f~(g:), CVy) as n—co,
Hence for the ¢ we can find a number n,(¢, 7, M) such that D(f~'(g.),
CVyNR,)=D(f9:), CVi)+e=D(f'(9:))+¢ for n=mn,. Hence by
(3) for the given ¢ and ¢>k we can find a number n,= max (n,, n,)
such that both following inequalities hold
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% UX(@)ds>a—e and D(f~(g,), CVy N R <V Kery +¢

RNt for n=n, “
= IV3e

We see easily the number of components of dg; in the w-local

parameter disc is finite, because |w |§—§ is compact. Since f(z) is

analytic in R, f~*(dg,) does not cluster in B. The function U(z) is
harmonic in G and 0V, does not cluster in R. If we deform oR,

slightly, then U}(z) and %U},”(z) vary very little. Hence we can

deform oR, so that
—a%Uz:f(z)dsza—Ze and D(f-"(g),CVuN R) <1/ Ker,+2¢ (4)

G;N Ry, NV yr
and that the number of components of the boundary (R, N G)—Vy
may be finite, where M is a fixed number.

Hence there are only a finite number of branch points of level
curves of U¥(2) in (R, N G)—V,. Putz=exp(UX()+1VX(z))=re?,
where VX(z) is the conjugate harmonic function of UX(z). Then
|2|=¢* on 0V, N R, and by (&) g 6= S %U,’;“(z)dsga—%.

WV yNR,NG; WyNR,NG;

We consider D(f~'(g.), CVy N R,) in the following way
D(f@), CVunR)= || 1r@f(Lvr@)

g NCV yNRL,NG

+%<%Uﬁ,"(z))}%r dr do

> | (e | |aiU,f;f(rew) rdrdf= SS | f/(rei®)|drd

FHgp)NCY ¥ NR,NG r FUgp)NCV yNBLNG

by }aa UX@)|r=1. Sincea—i—U,{”(z)=0 on 0R,, 6=const. along oR,.
”

Let 6 be the set of ¢ such that we can trace trajectry T, along
which #=const. and |z| varies continuousely from |z|=1 (U¥(z)=0
on 0GNR,) to e*(U¥(z)=Mon odV*NR,) in GNCV,NR,. Then since

the connectivity of GN R, N CV, is finite, mes 6= S _(% U (2)ds.

GNR,NAV 3
Let 6 be the set of 6 e such that T, intersects dG; when 2z goes
from 0G to oV, along T,. Then by (4) mes O=a—2c., Now
G;=(R—R) N f(9;)) < f(9:) € G=one component of f~*(g,). Hence
the image of f~YT,) of T,:0¢c® must intersect f~(dg;) at least
once and intersect f—*(g,) at least once for k:1<k<% when |z|

varies from 1 to ¢” along T,. Hence S | f/(re?®) | dr=r,—7;

TINCY N f~Ugping
for 6 ®. Hence by (4') ol o
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VeKr,+2e2 D(f7(9:)) +26 2 D(f~(9:),C Vi N R,) 2 (@ —2¢)(r, — 7). (5)
Now ¢ is arbitrary. Let 7—oo and then e—0. Then (5) is a contradic-
tion. Thus the set F' is of capacity zero.

As a corollary of Theorem (K) we shall prove

Corollary. Let ¥ be a closed set in the w-plane and contained

in |w|<%. If lim S8 < oo: g — Blw: dist (w, =r], F s a
=

set of logarithmic capacity zero.
Let R:|w|<1 and R=E[2¢$:|2|<1] and w=f(z)=2. Then

f(z) is analytic in R. Let R,=F [z: }z +%‘ <%j| Clearly R is a

Riemann surface with positive boundary and N-Martin’s topology is
defined in R—R,. Let B* be the boundary of R (with respect to
N-Martin’s topology) whose projection is contained in . Let pe
(B*N BY). Then M(f(p))cP. Hence by Theorem (K) B* is a set
of capacity zero. This means that there exists no non const. positive
bounded full-harmonic funetion in R— R, with positive mass only on
B*, Assume § is of positive logarithmic cap. Then hm LUR)>0

and oo >D(,U(z))>0 for r,=r>0, where ,U(2) is a harmomc function
in E[2¢ (R,+%.): |#2|<1] such that ,U(z)=0 on |z|=1 and on 0R,,
,U(®)=1on 0%,. Let w.(z) be a harmonic function in E[z ¢ (R,+F,):

|2|<1] such that w,(z)=0 on oR,, _aa—w,(z)zo on |z|=1and w,(2)=1
n

on 0%,. Then w,(?)=,U() and w,(R)=>w(z) as r—0 and D(w(z))
=D(,U(z))<oo. Then w(z) is full-harmonic in R—R, and mass of
®(?) lies only on B*, This contradicts that B* is of cap. zero.
Hence % is a set of logarithmic cap. zero.
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