9. Ackermann's Model and Recursive Predicates

By Moto-o Takahashi
Mathematical Institute, Tokyo University of Education, Tokyo
(Comm. by Zyoiti Suetuna, m. J. A., Feb. 12, 1968)

Let N be the set of all non-negative integers. Define a binary predicate ϵ on N by

$$
a \in b . \equiv .\left[b / 2^{a}\right] \text { is odd, }
$$

where $[x]$ means the greatest integer contained in x. (For the recursive definition of $[x / y]$, see Kleene [1], p. 223). Then the structure $\langle N, \epsilon\rangle$, which is called Ackermann's model, satisfies all the axioms of $Z F$ except the axiom of infinity.

A predicate $P\left(a_{1}, \cdots, a_{n}\right)$ on N is called bounded, if there exists a restricted formula $A\left(x_{1}, \cdots, x_{n}\right)$ in the sence of [2] such that $P\left(a_{1}, \cdots, a_{n}\right)$ holds if and only if $A\left(a_{1}, \cdots, a_{n}\right)$ is true in $\langle N, \epsilon\rangle$. Then our main theorem can be stated as follows:

Theorem. A predicate $R\left(a_{1}, \cdots, a_{n}\right)$ is general recursive if and only if there exists bounded predicates $P\left(a, a_{1}, \cdots, a_{n}\right)$ and $Q\left(a, a_{1}, \cdots, a_{n}\right)$ such that

$$
\text { (1) } \quad R\left(a_{1}, \cdots, a_{n}\right) \equiv \exists x P\left(x, a_{1}, \cdots, a_{n}\right) \equiv \forall x Q\left(x, a_{1}, \cdots, a_{n}\right)
$$

for all $a_{1}, \cdots, a_{n} \in N$.
Proof. First suppose that there exist P and Q satisfying (1). Since ϵ is primitive recursive, we can easily show that every bounded predicate is primitive recursive. Hence, by the theorem $\mathrm{VI}(b)$ of [1], R is general recursive. Before proving the converse, we prove several lemmata. We temporarily call a predicate R for which there can be found bounded predicates P and Q satisfying (1) as a Δ predicate.

Lemma 1. $a<b$ is $a \Delta$-predicate.
Proof. Let $A(p, z)$. $\equiv . \operatorname{Comp}(z) \wedge p \subseteq z \times z \wedge \forall x \forall y(\langle x z\rangle \in p$ $\equiv x \in z \wedge y \in z \wedge \exists u(u \in y \wedge u \notin x \wedge \forall v(\langle u v\rangle \in p \supset(v \in x \equiv v \in y))))$, where $z \times z$ means direct product. Then $A(p, z)$ has the following properties:
$1^{\circ} A(p, z)$ is bounded.
2° If $A(p, z)$, then we have

$$
\forall i \forall j(\langle i j\rangle \in p \equiv i \in z \wedge j \in z \wedge i<j)
$$

$3^{\circ} \quad \forall a \forall b \exists p \exists z(a \in z \wedge b \in z \wedge A(p, z))$.
1° and 3° are easily proved. 2° is proved by the induction on $\max (i, j)$.Therefore

$$
a<b \equiv{ }_{\exists}^{\forall} p_{\exists}^{\forall} z\left(a \in z \wedge b \in z \wedge A(p, z)_{\wedge}\langle a b\rangle \in p\right) .
$$

This clearly shows $a<b$ is a Δ-predicate.
Lemma 2. $a^{\prime}=b$ is $a \Delta$-predicate.

Let $B(p, z) . \equiv . \quad \operatorname{Comp}(z) \wedge p \subseteq z \times z \wedge \forall x(x \in z \wedge \exists t(t \in x) \supset \exists y(\langle y x\rangle$ $\in p)) \wedge \forall x \forall y(\langle x y\rangle \in p . \equiv . x \in z \wedge y \in z \wedge \exists u(u \in y \wedge u \notin x \wedge \forall t(t \in z \wedge t<u$ $\supset t \in x \wedge t \notin y) \wedge \forall t(t \in x \wedge u<t \supset(t \in x \equiv t \in y)))$.
Then
$1^{\circ} B(p, z)$ is a Δ-predicate.
2° If $B(p, z)$. then we have

$$
\forall i \forall j\left(\langle i j\rangle \in p \equiv i \in z \wedge j \in z \wedge i^{\prime}=j\right)
$$

$3^{\circ} \forall a \forall b \exists p \exists z(a \in z \wedge b \in z \wedge B(p, z))$.
2° is proved also by the induction on j. Therefore

$$
\left.a^{\prime}=b \equiv{ }_{\exists}^{\forall} p_{\exists}^{\forall} z\left(a \in z \wedge b \in z \wedge B(p, z)_{\wedge}\right)^{\forall}\langle a b\rangle \in p\right) .
$$

Lemma 3. If $\varphi\left(a_{1}, \cdots, a_{n}\right)$ is primitive recursive, then $\varphi\left(a_{1}\right.$, $\left.\cdots, a_{n}\right)=b$ is a Δ-predicate.

Proof. Case I. $\varphi(a)=a^{\prime}$. Use Lemma 2.
Case II. $\varphi\left(a_{1}, \cdots, a_{n}\right)=q$.

$$
\varphi\left(a_{1}, \cdots, a_{n}\right)=b . \equiv . b=q . \equiv . \forall t(t \in b \supset t \in q) \wedge \forall t(t \in q \supset t \in b)
$$

Right most formula is bounded and hence a Δ-predicate.
Case III. $\varphi\left(a_{1}, \cdots, a_{n}\right)=a_{i}$.

$$
\varphi\left(a_{1}, \cdots, a_{n}\right)=b . \equiv . b=a_{i}
$$

Case IV. $\varphi\left(a_{1}, \cdots, a_{n}\right)=\psi\left(\chi_{1}\left(a_{1}, \cdots, a_{n}\right), \cdots, \chi_{m}\left(a_{1}, \cdots, a_{n}\right)\right)$
$\varphi\left(a_{1}, \cdots, a_{n}\right)=b . \equiv,{ }_{\exists} z_{1} \cdots{ }_{\exists}^{\forall} z_{m}\left(\chi_{1}\left(a_{1}, \cdots, a_{n}\right)=z_{1}\right.$
$\left.\wedge \cdots \chi_{m}\left(a_{1}, \cdots, a_{n}\right)=z_{m}{ }^{\beth} \psi\left(z_{1}, \cdots, z_{m}\right)=b\right)$
Case Va. $\varphi(0)=q, \varphi\left(a^{\prime}\right)=\psi(a, \varphi(a))$.
$\varphi(a)=b, \equiv,{ }_{\exists}^{\forall} p_{\exists}^{\forall} z_{\exists}^{\forall} f(B(p, z) \wedge a \in z \wedge \forall i \forall j \forall k(\langle i j\rangle \in f \wedge\langle i k\rangle \in f \supset i$
$=k) \wedge \forall i\left(i \in z \supset \exists j\left(\langle i j\rangle \in f \wedge\left((i=0 \wedge j=q) \vee \exists k\left(k \in z \wedge k^{\prime}=i\right.\right.\right.\right.$
$\left.\wedge \exists u(\langle k u\rangle \in f \wedge j=\psi(k, u))))))_{\wedge}{ }_{\wedge} a b \in f\right)$.
Case Vb. Similar to the case Va.
Proof of main theorem. First we assume that $R\left(a_{1}, \cdots, a_{n}\right)$ is primitive recursive and let $\varphi\left(a_{1}, \cdots, a_{n}\right)$ be the representing function of it. By the preceding lemma $\varphi\left(a_{1}, \cdots, a_{n}\right)=0$ is a Δ predicate. Hence $R\left(a_{1}, \cdots, a_{n}\right)$ is a Δ-predicate.

Next let $R\left(a_{1}, \cdots, a_{n}\right)$ be general recursive. Then there exist primitive recursive predicates $R_{1}\left(a, a_{1}, \cdots, a_{n}\right)$ and $R_{2}\left(a, a_{1} \cdots a_{n}\right)$ such that

$$
R\left(a_{1}, \cdots, a_{n}\right) \equiv \exists x R_{1}\left(x, a_{1}, \cdots, a_{n}\right) \equiv \forall x R_{2}\left(x, a_{1}, \cdots, a_{n}\right)
$$

But R_{1} and R_{2} are Δ-predicates. Hence R is a Δ-predicate. q.e.d.

References

[1] S. C. Kleene: Introduction to Metamathematics. New York and Tronto (Van Nostrand), Amsterdam (North Holland), and Groningen (Noordhoff), (1952).
[2] A. Lévy: A hierarchy of formulas in set theory. Memoirs Amer. Math. Soc., 57, 76 (1965).

