On Generalized Integrals.

By Shizu Nakanishi

(Comm. by Kinjirô Kunugi, M. J. A., March 12, 1968)

1. Introduction. Prof. K, Kunugi introduced, in 1954, the notion of ranked spaces, in the Note [2], as an extension of the metric space, and introduced further, in 1956, the notion of a generalized integral, in the Note [3], based on his theory of ranked spaces and called it the (E. R.) integral. In fact, to give the definition of his generalized integral, he started with the set \mathcal{E} of step functions defined on a finite interval $a \le x \le b$, that is, functions having a constant value α_i in each of a finite number of sub-intervals $a_{i-1} < x < a_i$ in a division of $a \le x \le b$: $a_0 = a < a_1 \cdot \cdot \cdot \cdot < a_n = b$, as to the endpoints of these sub-intervals, we can assign values of the functions there arbitrarily. He supposed the integral defined for these functions, as usual, by the sum $\sum \alpha_i(a_i-a_{i-1})$. He introduced on the set $\mathcal E$ the set of neighbourhoods defined in the following way: Given a non-negative integer ν , a closed subset F of the interval $a \le x \le b$ and a point f of \mathcal{E} , the neighbourhood $V(F, \nu; f)$ of f is the set of all step functions g(x) such that: g(x)-f(x) is expressed as a sum of two step functions p(x) and $\gamma(x)$ satisfying the following conditions:

$$[1] \gamma(x) = 0$$
 for all $x \in F$,

$$\begin{bmatrix} 2 \end{bmatrix} \int_a^b |p(x)| dx < 2^{-\nu},$$
 $\begin{bmatrix} 3 \end{bmatrix} \left| \int_a^b \gamma(x) dx \right| < 2^{-\nu}.$

$$\left[\begin{array}{cc} 3 \end{array}\right] \quad \left|\int_a^b \gamma(x) dx \right| < 2^{-
u}$$

Under this topology, \mathcal{E} becomes a uniform space the depth of which is ω_0 , and so the indicator of \mathcal{E} should be ω_0 . The set \mathfrak{B}_{ν} of neighbourhoods of rank $\nu(\nu=0,1,2,\cdots)$ is formed by the neighbourhoods $V(F, \nu; f)$ with mes $([a, b] \setminus F) < 2^{-\nu \cdot 1}$ In this ranked space \mathcal{E} , we see that if $u: \{V(F_n, \nu_n; f_n)\}$ is a fundamental sequence of neighbourhoods, the limit $f(x) = \lim_{x \to a} f_n(x)$ exists almost everywhere, and the integrals $\int_{a}^{b} f_{n}(x)dx$ converges to a finit limit. This suggests that it should be possible to take this limit as the value of the integral of f(x). As a formula

$$\int_a^b f(x)dx = \lim_{n \to \infty} \int_a^b f_n(x)dx.$$

To justify this convention, he showed that it does not depend on the particular choice of the fundamental sequence of neighbourhoods,

¹⁾ For the sets E and F, $E \setminus F$ denotes the set of all those points of E which do not belong to E.

that is, if $u: \{V_n(f_n)\}$ and $v: \{V_n(g_n)\}$ are two fundamental sequences belonging to the same maximal collection u^* (he introduced the notion of maximal collection, corresponding to the notion of "equivalence" between fundamental sequences in a metric space), then we have

$$\lim_{n\to\infty} f_n(x) = \lim_{n\to\infty} g_n(x) \qquad \text{a.e.}$$

and

$$\lim_{n\to\infty} \int_{a}^{b} f_{n}(x) dx = \lim_{n\to\infty} \int_{a}^{b} g_{n}(x) dx.$$

But, the set of functions integrable in this sense is not linear, nor the generalized integral is a linear functional. In order to guarantee both linearities, on the fundamental sequences he imposed additional conditions, precisely the conditions P and P^* , which are independent on the notion of fundamental sequences.

The same reason will also be seen in the different definition from Kunugi's given by H. Okano in [5] for the (E. R.) integral.

On the other hand, I. Amemiya and T. Ando, in [1], proved that Kunugi's generalized integral²⁾ is identical with A-integral. Moreover, they showed that the set of functions integrable in the generalized sense is the completion of the set of Lebesgue integrable functions with respect to the quasi-norm

$$||f||_* = \sup_{k>0} \left| \int_a^b [f(x)]^k dx \right| + \sup_{k>0} k \text{ mes } \{x; |f(x)| \ge k\},$$
 where the function $[f(x)]^k$, the truncation of $f(x)$ by the positive

number k, is defined by

$$[f(x)]^k = \begin{cases} f(x) & \text{if } |f(x)| \le k, \\ k \text{ sign } f(x) & \text{if } |f(x)| > k. \end{cases}$$

Hence, there arises a question whether, if we introduce suitably a set of neighbourhoods on a set \mathcal{E} and define suitably a rank, the set of (E.R.) integrable functions can be obtained as a completion of the set \mathcal{E} . In papers I, II, and III, we will give a positive answer to it. We will construct a completion of \mathcal{E} , actually obtaining a ranked space of (E. R.) integrable functions to which the integral admits a unique and natural extension.

To do this, first we will show, in this paper, a few properties about the space \mathcal{E} .

Let us recall the notion of ranked spaces.

Definition of the depth of the space. Consider a set R (called a space) endowed with such a structure that each point p of R has a non-empty set of subsets of R (denoted by V(p) and called neighbourhoods of p) satisfying the axioms (A) and (B) of Hausdorff.³⁾ Given a point p of R, we say that a monotone decreasing sequence

²⁾ This integral, moreover, has been extended by K. Kunugi [4] and H. Okano [5].

³⁾ F. Hausdorff: Grundzüge der Mengenlehre. Leipzig (Veit), p. 213 (1914).

of neighbourhoods $V_{\alpha}(p)$ is "type γ ", where γ is an ordinal number of Cantor, if α runs through the set $0 \le \alpha < \gamma$ of all ordinal numbers and if $V_{\alpha}(p) \supseteq V_{\beta}(p)$ for all α , β with $0 \le \alpha < \beta < \gamma$:

 $(1) \quad V_0(p) \supseteq V_1(p) \supseteq \cdots \supseteq V_{\beta}(p) \cdots, 0 \leq \alpha < \gamma.$

The sequence (1) which has no neighbourhoods U(p) such that $\bigcap_{\alpha} V_{\alpha}(p) \supseteq U(p)$ is said to be "maximal". We denote by $\omega(R, p)$ the smallest ordinal number of types of maximal monotone decreasing sequences of neighbourhoods of p. Now, we consider such a space that there is at least one point having a maximal monotone decreasing sequence of neighbourhoods. The smallest ordinal number $\omega(R, p), p \in R$, is called the depth of R and denoted by $\omega(R)$. $\omega(R)$ is an inaccessible ordinal number (or regular).

Definition of the ranked space. Let us choose once for all an inaccessible ordinal number ω such that $\omega_0 \leq \omega \leq \omega(R)$. ω is called "indicator" of R. Given an ordinal number α , which runs through the interval $0 \leq \alpha < \omega$, suppose that we have a set \mathfrak{V}_{α} of neighbourhoods, called neighbourhoods of rank α . Then R is said to be a ranked space, if the sequence of sets $\mathfrak{V}_{\alpha}(0 \leq \alpha < \omega)$ satisfies the following axiom (a):

(a) For every neighbourhood V(p) of p $(p \in R)$ and for every ordinal number α such that $0 \le \alpha < \omega$, there exist an ordinal number β and a neighbourhood U(p) of p such that we have at the same time

$$\alpha \leq \beta < \omega$$
, $U(p) \subseteq V(p)$, $U(p) \in \mathfrak{B}_{\beta}$.

Definition of the fundamental sequence or Cauchy sequence. Let β be an inaccessible ordinal number such that $0 < \beta \le \omega$. Then a monotone decreasing sequence of neighbourhoods of points:

$$V_{\scriptscriptstyle 0}(p_{\scriptscriptstyle 0})\!\supseteq V_{\scriptscriptstyle 1}(p_{\scriptscriptstyle 1})\!\supseteq \cdots \supseteq V_{\scriptscriptstyle \alpha}(p_{\scriptscriptstyle \alpha})\!\supseteq \cdots, 0\!\le\!\alpha\!<\!\beta,$$

is said to be fundamental or of Cauchy, if there is an ordinal number $\gamma(\alpha)$ such that $V_{\alpha}(p_{\alpha}) \in \mathfrak{B}_{\gamma(\alpha)}$ for all α ; $0 \le \alpha < \beta$, and satisfies the following two conditions:

- (1) $\gamma(0) \le \gamma(1) \le \cdots \le \gamma(\alpha) \le \cdots (0 \le \alpha < \beta)$
- (2) for each α such that $0 \le \alpha < \beta$, there is a number $\lambda = \lambda(\alpha)$ such that $\alpha \le \lambda < \beta$, $p_{\lambda} = p_{\lambda+1}$, and $\gamma(\lambda) < \gamma(\lambda+1)$ (except the equality).

Given two monotone decreasing sequences of points $u: \{V_{\alpha}(p_{\alpha})\}$ and $v: \{V_{\beta}(q_{\beta})\}$, we denote by u > v the relation between u and v such that for every $V_{\alpha}(p_{\alpha})$ there is a $V_{\beta}(q_{\beta})$ contained in $V_{\alpha}(p_{\alpha})$. We will introduce, with Y. Yoshida, the notion of maximal collection in a slight different form from Kunugi's. A set u^* of fundamental sequence

⁴⁾ A limit number α is said to be "inaccessible", if, for every β with $\beta < \alpha$ and for every function $\alpha(\gamma)$ defined for γ with $0 \le \gamma < \beta$, such that $0 \le \alpha(\gamma) < \alpha$, we have always $\sup_{\gamma} \alpha(\gamma) < \alpha$.

is said to be a maximal collection, if it satisfies the following conditions:

- (1*) for $u \in u^*$ and $v \in u^*$, there is a $w \in u^*$ such that w > u and w > v,
- (2*) there is no set v^* of fundamental sequences with the property (1*), strictly containing u^* .
- 2. Spaces of step functions. To fix the ideas, we consider the real valued functions y=f(x) defined on the interval [a,b], that is, the set of all x such that $a \le x \le b$, where a,b are arbitrary two real numbers such that a < b. We start with the set $\mathcal E$ of step functions, following K. Kunugi, only to avoid assuming anything of the theory of integration, and we suppose the integral defined by the sum $\sum \alpha_i(a_i-a_{i-1})$ for the step function having a constant value α_i in each of a finite number of sub-intervals $a_{i-1} < x < a_i$.

Let us now introduce on the set $\mathcal E$ a set of neighbourhoods.

Definition 1. Given a closed subset F of [a, b], a positive number ε and a point f of \mathcal{E} , the neighbourhood of f, denoted by $V(F, \varepsilon; f)$ or simply by V(f), is the set of all those step functions g(x) which are the sums of f(x) and the other functions $\gamma(x)$ having the following properties:

$$[\alpha] |r(x)| < \varepsilon$$
 for all $x \in F$

$$[\beta]$$
 k mes $\{x; |r(x)| > k\} < \varepsilon$ for each $k > 0$,

$$\left[\begin{array}{ccc} \gamma \end{array} \right] \left| \int_a^b \left[r(x) \right]^k dx \right| < \varepsilon \quad \text{for each} \quad k > 0,$$

where $[r(x)]^k$ is the truncation of r(x) by k. Then, the neighbourhoods satisfy the axioms (A) and (B) of Hausdorff. To see the depth of \mathcal{E} , we first show the following lemma:

Lemma 1. If the neighbourhoods $V(A, \varepsilon, f)$ and $V(B, \eta; g)$ have the relation $V(A, \varepsilon; f) \supseteq V(B, \eta; g)$, then $mes(A \setminus B) = 0$ and $\varepsilon \ge \eta$.

Proof. Suppose, if possible, that $\operatorname{mes}(A \backslash B) > 0$. Let η' be a positive number with $0 < \eta' < \eta$, then there is a finite set of disjoint intervals $I_i(i=1,2,\cdots,i_0)$ contained in the set $[a,b]\backslash B$ and with $\eta'/2\varepsilon > \operatorname{mes}(\bigcup_i I_i) > \operatorname{mes}((\bigcup_i I_i) \cap A) > 0$. Put $r(x) = \eta'/\operatorname{mes}(\bigcup_i I_i)$ on $\bigcup_i I_i$ and zero elsewhere, then $h(x) = g(x) + r(x) \in V(B,\eta;g)$, but $\notin V(A,\varepsilon;f)$. Next suppose that $\varepsilon < \eta$, if possible. Since $\operatorname{mes}(A \backslash B) = 0$, there is a finite set of disjoint intervals $I_i(i=1,2,\cdots,i_0)$ such that $\operatorname{mes}(A') > 0$ and $\operatorname{mes}(\bigcup_i I_i) < 1$, where $A' = (\bigcup_i I_i) \cap A \cap B$. Put $\alpha = \max_{x \in A'} |f(x) - g(x)|$ and let λ be a number ≥ 1 with $\operatorname{mes}\{x; |f(x) - g(x)| \geq \alpha/\lambda, x \in A\} > 0$, then there is a α' with $\varepsilon < \alpha/\lambda + \alpha' < \eta$, since $\alpha/\lambda \leq \alpha < \varepsilon < \eta$. Put $r(x) = \alpha' \operatorname{sign}(f(x) - g(x))$ on $\bigcup I_i$ and zero elsewhere, then $h(x) = g(x) + r(x) \in V(B,\eta;g)$ but $\notin V(A,\varepsilon;f)$, in contradiction to the hypothesis.

Proposition 1. \mathcal{E} is a space the depth of which ω_0 .

Proof. For each $f \in \mathcal{E}$, the monotone decreasing sequence of neighbourhoods $\{V([a,b],1/n;f)\}$ is maximal. For, if not, there is a $V(B,\eta;f)$ with $V(B,\eta;f) \subseteq \bigcap_{n} V([a,b],1/n;f)$, and then $\eta=0$ from Lemma 1, contrary to $\eta>0$. Hence $\omega(R)=\omega_0$.

For $\nu = 0, 1, 2, \dots$, a neighbourhood $V(F, \nu; f)$ is said to be rank ν , if it satisfies the condition

 $[\delta] \mod ([a,b] \setminus F) < \varepsilon \text{ and } \varepsilon = 2^{-\nu},$

and by \mathfrak{B}_{ν} the set of all neighbourhoods of rank ν . Then, the rank so defined satisfies the condition (a). For, given a neighbourhood $V(A, \varepsilon; f)$, we have $V([a, b], 1/n; f) \subseteq V(A, \varepsilon; f)$ for every n with $1/2^n < \varepsilon$. Therefore, it follows that:

Proposition 2. \mathcal{E} is a ranked space.

Lemma 2. Let $u: \{V(A_n, \varepsilon_n; f_n)\}$ be a monotone decreasing sequence for which mes $([a, b] \setminus A_n)$ and ε_n converge to zero as $n \rightarrow \infty$, then

- 1) $f_n(x)$ converges to a finite function f(x) almost everywhere on [a, b], precisely $\bigcup_{m=0}^{\infty} \left(\bigcap_{m=n}^{\infty} A_m\right)$.
 - 2) the integrals $\int_a^b f_n(x) dx$ converges to a finite limit.

Proof. Let $x \in \bigcap\limits_{m=n}^{\circ} A_m$, then for $\varepsilon > 0$, there is an n_0 such that $\varepsilon_{n_0} < \varepsilon$ and $n_0 > n$, and we have $|f_m(x) - f_{m'}(x)| < \varepsilon_m < \varepsilon$ for every $m' > m > n_0$, since $f_{m'} \in V_m(f_m)$ and $x \in A_m$. By Lemma 1, $\operatorname{mes}(A_n) = \operatorname{mes}\Big(\bigcap\limits_{m=n}^{\circ} A_m\Big)$, hence (1) follows. For every m > n, $\left|\int\limits_a^b (f_m(x) - f_n(x)) dx\right| < \varepsilon_n$ results from $f_m \in V_n(f_n)$. This proves (2).

Corollary 1. When $u: \{V_n(f_n)\}$ is a fundamental sequence, $f_n(x)$ converges to a finite function f(x) a.e. and $\int_a^b f_n(x)dx$ converges to a finite limit.

We denote, from now onwards, by J(u) the limit function f(x) and by I(u) the limit value $\lim_{n\to\infty}\int_a^b f_n(x)dx$.

Lemma 3. Let $u: \{V(A_n, \varepsilon_n; f_n)\}$ be a monotone decreasing sequence for which $\operatorname{mes}([a, b] \setminus A_n)$ and ε_n converge to zero as $n \to \infty$, and put $f(x) = \lim_{n \to \infty} f_n(x)$ a.e., then

- 1) $|f(x)-f_n(x)| \le \varepsilon_n$ for all $x \in \bigcap_{m=n}^{\infty} A_m$,
- 2) $k \operatorname{mes}\{x; |f(x)-f_n(x)| > k\} \le \varepsilon_n^{m-n} \text{ for each } k > 0,$
- 3) $\left| \int_a^b [f(x) f_n(x)]^k dx \right| \le \varepsilon_n$ for each k > 0.

Proof. 1) and 3) are easily seen from Lemma 2. As to 2), since, if we put

$$E_m = \{x; |f_n(x) - f_{m'}(x)| > k \text{ for all } m' \ge m\},$$

$$E = \bigcup_{m=0}^{\infty} E_m, A = \bigcup_{n=0}^{\infty} \left(\bigcap_{m=n}^{\infty} A_m \right),$$

then $A \cap E = \{x; |f(x) - f_n(x)| > k\}$ and $E_m \subseteq E_{m+1}$, we have k mes $\{x; |f(x) - f_n(x)| > k\} = k$ mes $(E \cap A) = \lim_{m \to \infty} k \text{ mes } (E_m \cap A) \leq \overline{\lim}_{m \to \infty} k$ mes $\{x; |f_m(x) - f_n(x)| > k\} \leq \varepsilon_n$.

Lemma 4. Let $u: \{V(A_n, \varepsilon_n; f_n)\}$ and $v: \{V(B_n, \eta_n; g_n)\}$ be two monotone decreasing sequences for which $\operatorname{mes}([a,b]\backslash A_n)$, $\operatorname{mes}([a,b]\backslash B_n)$, ε_n and η_n converge to zero as $n\to\infty$ and u>v. Put

$$f(x) = \lim_{n \to \infty} f_n(x)$$
 a.e., $g(x) = \lim_{n \to \infty} g_n(x)$ a.e..

Then we have

- 1) f(x) = g(x) a.e.,
- 2) $\lim_{n\to\infty}\int_a^b f_n(x)dx = \lim_{n\to\infty}\int_a^b g_n(x)dx.$

Proof. Since $u \succ v$, for each n, there is an m such that $V_n(f_n) \supseteq V_m(g_m)$, so that by Lemma 1, $\operatorname{mes}(A_n \backslash B_m) = 0$ and $|g_m(x) - f_n(x)| < \varepsilon_n$ for all $x \in A_n$. By Lemma 3, $|f(x) - f_n(x)| \le \varepsilon_n$ for almost all $x \in A_n$ and $|g(x) - g_m(x)| \le \eta_m$ for almost all $x \in B_m$. Therefore (1) follows. We have $\left|\int_a^b (f_n(x) - g_m(x)) dx\right| < \varepsilon_n$, since $g_m \in V_n(f_n)$, and so we have 2) by Lemma 2.

Corollary 2. When u and v are two fundamental sequences such that u > v, we have J(u) = J(v) a.e. and I(u) = I(v).

References

- [1] I. Amemiya and T. Ando: On the class of functions integrable in a certain generalized sense. J. Fac. Sci. Hokkaido Univ., 18, 128-140 (1965).
- [2] K. Kunugi: Sur les espaces completes et régulièrement completes. I, II. Proc. Japan Acad., 30, 553-556, 912-916 (1954).
- [3] —: Application de la méthode des espaces rangés à la theorie de l'intégration. I. Proc. Japan Acad., 32, 215-220 (1956).
- [4] —: Sur une généralisation de l'intégrale, fundamental and applied aspects of math. (published by Res. Inst. of Applied Electricity, Hokkaido Univ.), 1-30 (1959).
- [5] H. Okano: Sur une généralization de l'intégrale (E. R.) et un théorème général de l'intégration par parties. J. Math. Soc. Japan, 14, 432-442 (1962).