
114 Proc. Japan Acad., 44 (1968) Vol. 44,

27. Some Generalizations of QF.Rings

By Toyonori KATO
Mathematical Institute, TShoku University, Sendai

(Comm. by Kenjiro SHODA, M. J. A., March 12, 1968)

1. Introduction. Throughout this paper all notations and all
terminologies are the same as in T. Kato [5.

Recently there have been developed nice generalizations of QF-
rings. B. L. Osofsky [6 has studied rings R for which R is an
injective cogenerator in the category of right R-modules
Osofsky’s theorem [6, Theorem 1 states that, if R is an injective
cogenerator in 5/, then R modulo its Jacobson radical J is Artinian.
G. Azumaya 1 and Y. Utumi [8 have independently characterized
rings R for which every faithful left R-module is a generator in
/. Such rings are called left PF. A theorem of Azumaya-Utumi
states that a ring R is left PF if and only if R is left self-injective,
R/J is Artinian, and every nonzero left ideal contains a simple one.
T. Kato [4, [5 has studied rings R for which the injective hull
E(R) of R is torsionless and has proved the equivalence of the
following statements:

(1) R is right PF.
(2) R is an injective cogenerator in .t.
(3) E(R,) is torsionless and R is an S-ring.
(4) R is a cogenerator in i, and is a right S-ring.
In this paper we shall be concerned with the following condition:
(a) if U is a simple right (resp. left) ideal of a ring R, then

there exists a e R such that UaR, E(aR)R (resp. URa, E(Ra)
R).

2. The condition (a). Proposition 1. The following condi-
tions on a ring R are equivalent:

(1) R satisfies (a) for simple right ideals.
(2) E(U) is torsionless for each simple right ideal U.
Proof. (1) implies (2) trivially.
(2) implies (1). Let U be a simple right ideal. Since E(U) is

torsionless by assumption, we have a map f: E(U)--R such that
U-oE(U)---R is nonzero, or equivalently, a monomorphism by T.
Kato 5, (1.1). f must be a monomorphism since E(U) ’ U. From
this our conclusion (1) follows immediately.

In my previous paper 5, we have discussed rings R for which
E(R) is torsionless. In the following we shall compare such rings
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with rings satisfying (a).
Proposition 2. Let E(R,) be torsionless. Then R satisfies (a)

for simple right ideals.
Proof. Since E(R,) is torsionless, the injective hull of every

torsionless right R-module is torsionless by T. Kato [5, Prop. 1].
Thus R satisfies (a) for simple right ideals by Proposition 1.

The following proposition is known, and we omit the proof.
Proposition 3. The following conditions are equivalent for

any ring R"
(1) R is a cogenerator in
(2) R satisfies (a) for simple right ideals and is a left S-ring.
The following lemma is useful in this paper (see K. Sugano

[7, Lemma 3]).
Lemma 1. If aR, a e R, is a simple right ideal such that E(aR)

R, then Ra is a unique simple left ideal in l(r(a)).
Proof. Let Obel(r(a)). Then r(a)=r(b) by the maximality

of r(a), and hence the mapping br--ar, r e R, gives a homomorphism
of bR onto aR. Since E(aR)R, this map is given by the left
multiplication of an element of R. Thus RaRb. This shows that
Ra is a unique simple left ideal in l(r(a)).

Corollary. Let R satisfy (a) for simple right ideals, and U
a simple right ideal. Then U* contains a unique simple submodule.

Proof. Take a e R such that UaR, E(aR) cR. Then U*
(aR)* (R/r(a))* l(r(a)). Hence U* contains a unique simple sub-
module by the above lemma.

We have seen in T. Kato [5, Lemma 2] the following lemma
which is also useful.

Lemma 2. The following conditions on a ring R are equivalent:
(1) The dual of any simple left R-module is zero or simple.
(2) The dual of any simple left ideal of R is simple.
(3) If Ra, a e R, is simple then r(l(a))=aR.
(4) Ext,(R/U, R)=0 for each simple left ideal U.
If R is a cogenerator in /., then R satisfies (a)for simple

right ideals by Proposition 3 and Ext,(R/U, R)=O for each simple
left ideal U by Lemma 2. This observation shows that the follow-
ing theorem is applicable to right self-cogenerator rings.

Theorem 1. Let R satisfy (a) for simple right ideals, and
let Ext,(R/U, R)=O for each simple left ideal U. Then

(1) The mapping
Ra--aR, a e R

gives a one-to-one, onto, correspondence between isomorphism classes
of simple left ideals and isomorphism classes of simple right ideals.

(2) Each simple left ideal is of the form Re/Je, e=ee R.
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Proof. (1) We first show that our correspondence is well defined.
In fact, let RaRb be simple left ideals. Then

aR r(l(a)),(Rfl(a))*(Ra)*(Rb)* r(l(b)) bR
is simple by Lemma 2.

[onto Let U be any simple right ideal. By virtue of (a), UaR,
E(aR)cR, for some aeR. Then Ra is simple by Lemma 1, and
Ra---.aR U.

[one-to-one Let Ra, Rb, be simple such that aR,bR. Then
l(r(a))(aR)* (bR)* l(r(b)),

and Ra, Rb, are simple submodules of l(r(a)), l(r(b)), respectively.
Therefore RaRb by Corollary to Lemma 1.

(2) Let U be a simple left ideal. Then U* is simple by Lemma
2. By the condition (a), U*aR, eR=E(aR), for some a, e=eeR.
We show that aR=er(J). In fact, Ra is simple by Lemma I and
hence Ja=O, or equivalently, a er(J). Thus aRcer(J) since aR
E(aR)= eR. Next, Re/Je is simple since eR E(aR) is indecomposable

injective (see B. L. Osofsky [6, Lemma 3). Then er(J),(Re/Je)*
is simple by Lemma 2. Thus we have aR=er(J). Now, U, Re/Je,
are the unique simple submodules of U**, (aR)*(er(J))* (Re/Je)**,
respectively by Corollary to Lemma 1 and by the fact that both U
and Re/Je are torsionless. Therefore U,Re/Je since U**(aR)*.

The statement (2) in the preceding theorem is meaningful by
virtue of the foliowing lemma which will be of interest by itself.

Lemma :3. The following conditions on a ring R are equivalent"
(1) R is semi-simple.
(2) R is a right S-ring with zero Jacobson radical.
(3) Each simple left R-module is projective.
Proof. (1)(2) is evident.
(2) implies (3). Let U be any simple left R-module. We may

assume, without loss of generality, that U is a simple left ideal of
R since R is a right S-ring. But, since rad R=O, U is generated
by an idempotent (see N. Jacobson [3, p. 57) and hence U is
projective.

(3) implies (1). It suffices to show that R equals its left socle,
say, S. Assume RS. Then SL for some maximal left ideal
L. Since R/L is projective by assumption, R-L(R)L’ for some left
ideal L’. Now L’,R/L is simple, and hence L’SL. But this
contradicts the fact that LL’=O.

We are now ready for one of our main results.
Theorem 2. The following conditions on a ring R are equivalent:
(1) R is an injective cogenerator in t.
(2) R satisfies (a) for simple right ideals, Ext,(R/U, R) 0
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for each simple left ideal U, and R is a right S-ring.
P:oo. (1) implies (2). In view of Proposition 3 and Lemma 2,

it is enough to show that, if R is an injective cogenerator in /,,
then R is a right S-ring. Let R be an injective cogenerator in /..
Then R/J is Artinian by B. L. Osofsky [6, Theorem 1. Hence, by
virtue of Theorem 1 (1)together with the fact that R is a left
S-ring, we conclude that R is a right S-ring (see [.4, Theorem 6).

(2) implies (1). Assume (2). Since R is a right S-ring, each
simple left R-module is isomorphic to a simple left ideal. Hence
each simple left R-module is of the form Re/Je, e=ee R, by Theorem
1 (2). Thus each simple left R-module is R/J-projective and hence
R/J is Artinian by Lemma 3. Since R/J is Artinian and R is a
right S-ring, R is a left S-ring by Theorem 1 (1). Consequently
R is a cogenerator in / by Proposition 3. Now the right self-
injectivity of R follows from T. Kato 5, Theorem 1.

Let R satisfy (a) for simple left ideals, and U a simple left
ideal. Then by (the left-right analogy of) Corollary to Lemma 1,
U* contains a unique simple submodule, and this submodule is re-
garded as a simple right ideal. We shall use this fact to show the
following theorem which is analogous to Theorem 1.

Theorem :3. Let R satisfy (a) for each simple one-sided ideal.
(1) The mapping

U-,the unique simple submodule of U*
gives a one-to-one, onto, correspondence between isomorphism classes
of simple left ideals and isomorphism classes of simple right
ideals.

(2) Each simple left ideal is of the form Re/Je, e=ee R.
Proof. (1) Let U be a simple left ideal. By virtue of (a), U

Ra, E(Ra) R, for some a e R. Then our correspondence is just
URa---.aR,

since aR is the unique simple submodule of _r(l(a))(Ra)*U*
by (the left-right analogy of) Lemma 1.

one-to-one Let Ra, Rb, be simple left ideals such that E(Ra),
E(Rb)R. Assume aR.bR. Then l(r(a))(aR)*(bR)* l(r(b)).
But, Ra, Rb, are simple submodules of l(r(a)), l(r(b)), respectively.
Hence RaRb by Corollary to Lemma 1.

onto Let V be any simple right ideal. Take a e R such that
VaR, E(aR)R, making use of (a). Then Ra is simple by Lemma
i and
Ra-the unique simple submodule of [(Ra)*r(l(a))aR V.

(2) Let U be a simple left ideal. By virtue of (a), URa,
E(Ra)R, for some a e R. Then aR is simple. Choose b e R such
that aR.bR, eR=E(bR), e=ee R, making use of (a). Since eR is
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injective indecomposable, Re/Je is simple. Now, Re/Je is isomorphic
to a simple left ideal U’, say, since O(Re/Je)*.er(J)bR. Since

Re/JeU’-- the unique simple submodule of U’*(Re/Je)*
.er(J)bR,
URaaR’bR

we have UU’Re/Je by our one-to-one correspondence.
Making use of Theorem 3, we can now establish the following

refinement of a portion of T. Kato [5, Cor. to Theorem 1.
Theorem 4. The following conditions on a ring R are equiv-

alent:
(1) R is an injective cogenerator both in t and in
(2) E(R) and E(R) are torsionless and R is a right S-ring.
(3) E(U) and E(V) are torsionless for any simple left R-module

U and any simple right ideal V.
Proof. (1) trivially implies (2).
(2) implies (3). Let U, V, be a simple left R-module and a

simple right ideal respectively. Since R is a right S-ring, U is
isomorphic to a simple left ideal. Thus E(U)E(R) and E(V)
E(R) are torsionless.

(3) implies (1). Since E(U) is torsionless for any simple left
R-module U, R is a cogenerator in / by [5, Prop. 3, and
hence R is a right S-ring. Furthermore R satisfies (a) for each
simple one-sided ideal by Proposition 1. Now apply Theorem 3 and
we conclude that R/J is Artinian and that R is a left S-ring along
the same lines as in the proof of Theorem 2. Thus R is an injec-
tive cogenerator both in / and in 2/.

:. QF.rings. A ring R is called QF if R is both right and
left self-injective and R is both right and left Artinian. In the
following we give a short proof of a result due to S. Eilenberg and
T. Nakyama 2, Theorem 18.

Theorem 5. The following conditions on a ring R are equiv-
alent:

(1) R is QF.
(2) R is right self-injective and right Artinian.
(3) R is right self-injective and left Artinian.
(4) Ext,(R/U, R)=0 for each simple one-sided ideal U, and R is

right (or left) Artinian.
Proof. (1)(2), (3) is trivial.
(2) implies (4). The first part of the condition (4) follows at

once from the fact that R is an injective cogenerator in
(3) implies (4). By assumption, R is right self-injective, R/J is

Artinian, and every right ideal :/:0 contains a simple one. Hence
R is an injective cogenerator in /.
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(4) implies (1). The first part of the condition (4) implies that
the dual of each simple one-sided ideal is simple. Therefore R is
QF by the same argument as in the proof of [5, Proposition 4.
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