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1. Statement of theorems. Recently, Kartsatos [2-] proved
that certain differential equations of the form

x" /f(t)g(x, x’)=0 or x(’) +f(t)g(x)=O
can have only oscillatory solutions. Looking into the proofs in [2
closely, we see that the argument used there may be applied equally
well to equations of the following more general form:
1 x() +f(t)g(x, x’, ...,
We shall prove in this paper the following theorems, where all
functions considered are real-valued and continuous on their domains.

Theorem 1. Suppose that the differential equation (1) satisfies
the following hypotheses:

() f is a positive function defined on the interval I= to,
with to>O and f(t)dt- + c;

to
() g is defined on R; sgn g(x, x, ..., x)= sgn x for any (x,

x, ..., x) e R; and g(2x, 2x, ..., 2x.)=2+g(x, x., ..., x) for
any (x, x., ..., x) R, any R and some non-negative integer p.
Then, every solution of (1) on the interval I is oscillatory.

Theorem 2. Suppose that the equation (1) satisfies () and the
following:

() g is defined on R; sgn g(x, x., ..., x)=sgn x,_ for any (x,
x, ..., x,) e R; g(-x, -x., ..., -x)= -g(xl, x, ..., x.) for any
(x, x, ..., x,) R; and for any 2<k2n-1 and any cO, the
function g(x, x, ..., x.) has a definite limit G(k, c), which is posi-
tire or + oo, as x-- + oo, , x_--+ oo, x--c, x+--0, , x.--0.
Then, every solution of (1) on I is osciltatory.

We would like to remark that Kartsatos [2 proved Theorem 1
in the case n= 1 and Theorem 2 when the function g depends only
on the variable x.

The author is indebted to Professor K. Nakashima for kind help
and to Professor S. Sugiyama for pointing out errors in the first
draft of this paper.

2. Proof of theorems. First we shall prove the following
elementary but useful

Lemma. Let be a 2n-times continuously differentiable func-
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tion defined on the interval I=[t0, +c). If >0 and ()0 on the
interval I, then

lim ()(t)=0 for 1</<2n-1.

Proof of lemma. As 9(2)< 0 on the interval I, 9(2,-) is decreas-
ing on I, so that 9("-)(t) has a limit, finite or-, as t+.
We denote this limit by 9(-)(). We shall use similar notations
in what follows.

Case 1: If 9(’-’)()<0, then we see easily by integration that
(-)(t)- as t+, and by the same argument as above
?()(t)- as t+ for lk42n-3. And finally (t)- as
t+, which contradicts the hypothesis > 0 on I.

Case 2: If (-)()>0, then (-)(t)+ as t+ and so
()(t)+ as t+ for 0k2n-2. In this case, we have
()(t)/(t)0 as t+ for lk2n-1. In fact, this is trivial
for k=2n-1, because (-)() is finite. For lk2n-2, it can
be shown by using l’Hospital’s rule.

Case 3: If (-)()=0, then -)0 on I and therefore
is increasing on I. Thus, (-)() exists and is finite or +. If
(-)()0, then ()(t)- for 0k2n-3 and we get a con-
tradiction. If (-)()>0, then ()(t)+ as t+ for
0k2n-3. In this case, ?()(t)/(t)O as t+ by the above
mentioned arguments, so that the lemma is true. If (-)()=0,
then (-)<0 on I and so (-) is decreasing on I. Here we may
also have three cases: (-)()>0, (-)()0 or (-)()=0. In
the first case, the lemma is true. The second case never happens,
because it will lead to a contradiction. So we have only to dispose
of the third case. Then, (-)>0 on I and we again have to ex-
amine the limit (-)().

Repeating similar arguments, we shall have only the following
case that remains to be unsettled:

(-1)()0 and ()()=0 for lk2n-1.
In this case, is increasing. As >0 by hypothesis, we have
()>0 and therefore ()(t)/(t)()()/()=0 as t+ for
1 k 2n- 1. Hence our lemma is completely proved. Q.E.D.

In the above proof, we have shown the following
Corollary. If 0 and ()0 on I, then each () with

0k2n-1 has a definite limit as t+. If we denote by
()() these limits, then there happen only the following cases:

+
with 0k2n-1, where cO in case k-O.

Proof of Theorem 1. Assume on the contrary that there ex-
ists a solution x(t) of the equation (1) which does not oscillate on
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some interval Eta, +o) with t>t0. This solution x can be supposed
to be positive on the above interval. By (1), we have >=-f()
x g(z, ’, ..., <->) and so our hypothese simply that <<0 for all
t $. Using the lemma, we have

lim x()(t) =0 for lk2n-1.
+ x(t)

So, for any e>O, there exists T$0 such that

( x’ x(’-))g 1, , ..., -g(1, O, ..., O) <e for tT.

As we have sgn g(1, O, ..., O) =sgn 1, so g(1, O, ..., O) >0 and therefore
we may assume Oeg(1, O, ...., 0). As we see from the proof of
the lemma, both x’ and x(-) are non-negative for sufficiently large
t. Thus we may assume that x(t)>Co, X’(t)O,x(’-)(t)O and x(’)(t)<O
for all tt, where tmax (t, T) and c0 is some positive constant.

If we put y=x(-)/x, then we have

y’(t)- x()(t) x’(t)x(-)(t)
x(t) x(t) x(t)

for tt. Integrating this inequality over the interval Its, t and
using the equation (1), we have

x(-)(t) x(,-)(t) < (t f(s)g(x, x’, ..., x(-)) ds
x(t) x(t) , x(s)

f(s)x(s)g 1, ..., s

<-[g(1,0,...,O)-e]c]" f(s)ds,
t

which implies a contradiction; in fact, the last member tends to
as t+, while the first member remains bounded. Q.E.D.

Proof of Theorem 2. Let x(t) be a non-oscillatory solution of
the equation (1), which is assumed to be positive on Its, +). The
function x("-)(t) is decreasing for tt, because of our hypotheses.
By integrating the equation (1) from t to t, we have

(g 1) (- (t)+ (t)= f()(, ’, ..., -’).
s i follows from Corollary in this section ha -(t))O for
we have

) -(t)) f()(, ’, ..., -) for t)t.

By the roof of the lemma, is increasing on the interal t, +)
and, by the corollary, we have the following two eases, which we
shall ake care of one by one.

Cel: { for +1m-1
() or

for Om-l,
where 0< -1 and e) O. hen, our assumption implies that



No. 3 Oscillatory Property of Certain Non-linear Equations 113

lim g(x, x’, ..., x(-1) G(k, c) > e

for some positive e. So there exists a t>t such that g(x, x’,...,
x(-))> for all t >t. It is obvious that the inequality (2) remains
valid if we replace t by t. Thus we obtain

x(-)(t)e f(s)ds.
t

Clearly this leads to a contradiction.
Case 2:

0 for 1 m 2n- 1
x(()-

c>0 for m-0.
Then, given a positive number eg(c, 0, ..., 0), there exists a tt
such that g(c, O, ..., O)-e<g(x,x’, ...,x(-) for all tt and we
find from (2)

-(t)) f()(, ’, ..., (-)g)g(e, O, ..., O)--s f()d

or all tt, which again leads to a contradiction. Q.E.D.. Remarks. By considering the equation x() + x 0, we see
that it may be impossible to replace 2n by 2n+ 1 in Theorems 1 and 2.

As Kartsatos [2 has pointed out, we may improve the conditions
in our theorems. For example, the homogeneity o g in Theorem 1
may be assumed only for positive 2 and p may be any non-negative
number. But we preer here to the brevity o exposition at the
expense o generality.

Recently, Bhatia [1 and Tomastik [3 also have shown oscil-
latory properties for some second-order differential equations. But
their hypotheses are somewhat different rom ours.
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