51. On a New Positive Linear Polynomial Operator

By Dimitrie D. Stancu
Faculty of Mathematics, Cluj University, Cluj, Rumania
(Comm. by Kinjirô Kunugi, m. J. A., April 12, 1968)

In this note we introduce a new positive linear polynomial operator: $P_{m}^{[\alpha]}(f ; x)=P_{m}^{[\alpha]}(f(t) ; x)$, corresponding to a function $f=f(x)$, defined on the interval $[0,1]$, and to a parameter $\alpha \geqq 0$, which may depend only on the natural number m. This operator is

$$
\begin{equation*}
P_{m}^{[\alpha]}(f ; x)=\sum_{k=0}^{m} w_{m, k}(x ; \alpha) f\left(\frac{k}{m}\right) \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& w_{m, k}(x ; \alpha) \\
& \quad=\binom{m}{k} \frac{x(x+\alpha) \cdots(x+\overline{k-1} \alpha)(1-x)(1-x+\alpha) \cdots(1-x+\overline{m-k-1} \alpha}{(1+\alpha)(1+2 \alpha) \cdots(1+\overline{m-1} \alpha)} .
\end{aligned}
$$

One observes that it represents a polynomial of degree m.
Because $\alpha \geqq 0$, we have $w_{m, k}(x ; \alpha) \geqq 0$ for $x \in[0,1]$. Therefore the linear (additive and homogeneous) operator (1) is positive on the interval $[0,1]$. In fact we have here a class of operators depending on the parameter α.

First we should remark that for $\alpha=0$ the operator (1) reduces to the Bernstein polynomial

$$
\begin{equation*}
B_{m}(f ; x)=\sum_{k=0}^{m} p_{m, k}(x) f\left(\frac{k}{m}\right), \quad p_{m, k}(x)=\binom{m}{k} x^{k}(1-x)^{m-k} \tag{2}
\end{equation*}
$$

Then we wish to make the remark that if we choose $\alpha=0\left(m^{-1}\right)$ and use the change of variable $x=\frac{n}{m} y, n$ being a natural number not depending on m, then-denoting again the variable by x-we obtain from our operator the Mirakyan operator

$$
\begin{equation*}
M_{n}(f ; x)=e^{-n x} \sum_{k=0}^{\infty} \frac{(n x)^{k}}{k!} f\left(\frac{k}{n}\right) . \tag{3}
\end{equation*}
$$

After these preliminaries we can state several theorems, the proofs of which will appear in the journal: Rev. Roumaine Math. Pures Appl.

Theorem 1. If the parameter α has a fixed non-negative value in each term of the sequence $\left\{P_{m}^{[\alpha]}(f ; x)\right\}$, then there exists the following relationship

$$
\begin{align*}
& P_{m+1}^{[\alpha]}(f ; x)-P_{m}^{[\alpha]}(f ; x) \\
&=-\frac{1}{m(m+1)} \sum_{\nu=0}^{m-1} \frac{(x+\nu \alpha)(1-x+\overline{m-\nu-1} \alpha)}{(1+m \alpha)(1+\overline{m-1} \alpha)} w_{m-1, \nu}(x ; \alpha) \tag{4}\\
& \times\left[\frac{\nu}{m}, \frac{\nu+1}{m+1}, \frac{\nu+1}{m} ; f\right],
\end{align*}
$$

where $\left[\frac{\nu}{m}, \frac{\nu+1}{m+1}, \frac{\nu+1}{m} ; f\right]$ represents the divided difference of f on the indicated nodes.

From this theorem one deduces the following
Corollary. Let $\alpha \geqq 0$ has a fixed value. If f is convex of first order on the interval $[0,1]$, then the sequence of polynomials $\left\{P_{m}^{[\alpha]}(f ; x)\right\}$ is decreasing on the interval $(0,1)$. If f is non-concave of first order on $[0,1]$ then the sequence $\left\{P_{m}^{[\alpha]}(f ; x)\right\}$ is non-increasing on $[0,1]$.

Selecting $\alpha=0$ we are led to the known monotonicity properties of the sequence of Bernstein's polynomials, studied first by Temple [9].

If we take into account that one can deduce from (4), as a limiting case, the following equality,

$$
\begin{aligned}
& M_{n+1}(f ; x)-M_{n}(f ; x) \\
& \quad=-\frac{x}{n(n+1)} \sum_{\nu=0}^{\infty} \frac{(n x)^{\nu}}{\nu!} e^{-n x}\left[\frac{\nu}{n}, \frac{\nu+1}{n+1}, \frac{\nu+1}{n} ; f\right],
\end{aligned}
$$

it will be easy to state the corresponding monotonicity properties of the sequence of Mirakyan's operators, which have been investigated directly first by Cheney and Sharma [2].

We obtained for the operator (1) an expression in terms of finite differences of f.

Theorem 2. The operator (1) can be represented in the following form

$$
\begin{equation*}
P_{m}^{[\alpha]}(f ; x)=f(0)+\sum_{j=1}^{m}\binom{m}{j} \frac{x(x+\alpha) \cdots(x+\overline{j-1} \alpha)}{(1+\alpha)(1+2 \alpha) \cdots(1+\overline{j-1} \alpha)} \Delta_{1 / m}^{j} f(0), \tag{5}
\end{equation*}
$$

where $\Delta_{1 / m}^{j} f(0)$ is the finite difference of order j, with the step $1 / m$ and the starting point 0 , of the function f.

The key role in proving this theorem is played by the following
Lemma. If $x \in(0,1)$ and $\alpha>0$, then we can write

$$
w_{m, k}(x ; \alpha)=\binom{m}{k} \frac{B\left(\frac{x}{\alpha}+k, \frac{1-x}{\alpha}+m-k\right)}{B\left(\frac{x}{\alpha}, \frac{1-x}{\alpha}\right)}
$$

where $B(a, b)$ represents the beta function.
By using the representation (5) of the operator (1) we deduce at once the following identities

$$
\begin{align*}
& P_{m}^{[\alpha]}(1 ; x)=1, \quad P_{m}^{[\alpha]}(t ; x)=x, \\
& P_{m}^{[\alpha]}\left(t^{2} ; x\right)=\frac{1}{1+\alpha}\left[\frac{x(1-x)}{m}+x(x+\alpha)\right] . \tag{6}
\end{align*}
$$

We now state the main theorem of this note.
Theorem 3. If $f \in C[0,1]$ and $0 \leqq \alpha=\alpha(m) \rightarrow 0$ as $m \rightarrow \infty$, then the sequence $\left\{P_{m}^{[\alpha]}(f ; x)\right\}$ converges to $f(x)$ uniformly on $[0,1]$.

In order to prove this theorem it suffices to refer to a well known theorem of Bohman-Korovkin, (see, e.g., [1] or [4]) and to make use of the identities (6).

The following theorem enables us to see the order of approximation of a continuous function f by our operator (1).

Theorem 4. Let denote by $\omega(\delta)=\omega(f ; \delta)$ the modulus of continuity of f. If $f \in C[0,1]$ and $\alpha \geqq 0$, then we have

$$
\begin{equation*}
\left|f(x)-P_{m}^{[\alpha]}(f ; x)\right| \leqq \frac{3}{2} \omega\left(\sqrt{\frac{1+\alpha m}{m+\alpha m}}\right) \tag{7}
\end{equation*}
$$

The main steps in the proof of this theorem consist in proving the following two inequalities

$$
\begin{gathered}
\left|f(x)-P_{m}^{[\alpha]}(f ; x)\right| \leqq\left(1+\frac{1}{\delta} \sum_{k=0}^{m} w_{m, k}(x ; \alpha)\left|x-\frac{k}{m}\right|\right) \omega(\delta) \quad(\delta>0) \\
\sum_{k=0}^{m} w_{m, k}(x ; \alpha)\left|x-\frac{k}{m}\right| \leqq \frac{1}{2} \sqrt{\frac{1+\alpha m}{m+\alpha m}}
\end{gathered}
$$

We should remark that for $\alpha=0$ the inequality (7) reduces to the known inequality of Popoviciu [6]. The corresponding inequality for the operator (3) was recently given by Müller [5].

If one further assumes that f possesses a continuous derivative on $[0,1]$, then we may state

Theorem 5. If $f \in C^{1}[0,1]$, then we have the inequality

$$
\left|f(x)-P_{m}^{[\alpha]}(f ; x)\right| \leqq \frac{3}{4} \sqrt{\frac{1+\alpha m}{m+\alpha m}} \omega_{1}\left(\sqrt{\frac{1+\alpha m}{m+\alpha m}}\right),
$$

$\omega_{1}(\delta)$ being the modulus of continuity of f^{\prime}.
If $\alpha=0$ then it reduces to an inequality of Lorentz [3].
It is readily seen that in the case of Mirakyan's operator we have

$$
\left|f(x)-M_{n}(f ; x)\right| \leqq(a+\sqrt{a}) \frac{1}{\sqrt{n}} \omega_{1}\left(\frac{1}{\sqrt{n}}\right),
$$

where $a>0, x \in[0, a]$ and $f \in C^{1}[0, a]$.
The remainder term of the approximation formula

$$
f(x)=P_{m}^{[\alpha]}(f ; x)+R_{m}^{[\alpha]}(f, x)
$$

can be expressed by means of divided differences.
Theorem 6. We have the equality

$$
\begin{aligned}
R_{m}^{[\alpha]}(f ; x)= & \frac{x-1}{m(1+\overline{m-1} \alpha)} \sum_{k=0}^{m-1}(x+\alpha k) w_{m-1, k}(x ; \alpha)\left[x, \frac{k}{m}, \frac{k+1}{m} ; f\right] \\
& +\frac{\alpha}{1+\overline{m-1} \alpha} \sum_{k=0}^{m-1}(\overline{m-1} x-k) w_{m-1, k}(x ; \alpha)\left[x, \frac{k}{m} ; f\right]
\end{aligned}
$$

If $\alpha=0$ then it reduces immediately to

$$
R_{m}(f ; x)=-\frac{x(1-x)}{m} \sum_{k=0}^{m-1} p_{m-1, k}(x)\left[x, \frac{k}{m}, \frac{k+1}{m} ; f\right]
$$

which corresponds to the approximation of f by the Bernstein polynomial (2). It was first obtained by us in [7].

Finally, we give an asymptotic estimate of the remainder $R_{m}^{[\alpha]}(f ; x)$.

Theorem 7. Let $\alpha=\alpha(m) \rightarrow 0$ as $m \rightarrow \infty$. If f is bounded on $[0,1]$ and possesses a second derivative at a point \bar{x} of $[0,1]$, then

$$
R_{m}^{[\alpha]}(f ; \bar{x})=-\frac{1+\alpha m}{1+\alpha} \cdot \frac{\bar{x}(1-\bar{x})}{2 m} f^{\prime \prime}(\bar{x})+\frac{\varepsilon_{m}^{[\alpha]}(\bar{x})}{m},
$$

where $\varepsilon_{m}^{[\alpha]}(\bar{x})$ tends to 0 when m tends to ∞.
This theorem represents an extension to our operator (1) of a theorem due to Voronovskaja (see, e.g., [3]) in the special case of Bernstein's polynomial (2).

References

[1] E. W. Cheney: Introduction to Approximation Theory. New York, Mc-Graw-Hill (1966).
[2] E. W. Cheney and A. Sharma: Bernstein Power Series. Canad. J. Math., 16, 241-252 (1964).
[3] G. G. Lorentz: Bernstein Polynomials. Toronto, University of Toronto Press (1953).
[4] -: Approximation of Functions. New York, Holt, Rinehart and Winston (1966).
[5] M. Müller: Die Folge der Gammaoperatoren. Dissertation, Stuttgart (1967).
[6] T. Popoviciu: Sur l'approximation des fonctions convexes d'ordre supérieur. Mathematica, 10, 49-54 (1935).
[7] D. D. Stancu: The remainder of certain linear approximation formulas in two variables. Journ. SIAM Numer. Anal. Ser., B, 1, 137-163 (1964).
[8] -: On the monotonicity of the sequence formed by the first order derivatives of the Bernstein polynomials. Math. Zeitschr., 98, 46-51 (1967).
[9] W. B. Temple: Stieltjes integral representation of convex, functions. Duke Math. J., 21, 527-531 (1954).

