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On Nuclear Spaces with Fundamental System
of Bounded Sets.

By Shunsuke FUNAKOSI

(Comm. by Kinjir6 KUNU(I, M. Z. A., May 13, 1968)

We consider a nuclear space with a fundamental system of
bounded sets. In this paper, we consider the open mapping and
closed graph theorems in the nuclear space.

For nuclear spaces and its related notion see [8]. Most of the
definitions and notations of locally convex spaces are taken from N.
Bourbaki [1] and T. Husain [4].

1o In this section, we consider under what conditions nuclear
space is the space with the open mapping and closed graph theorems.

Definition 1. Let E be a locally convex vector space and E’ its
dual.

(1) ew*-topology is defined to be the finest topology on E’ which
coincides with a(E’, E) on each equicontinuous set of E’.

(2) p-topology is the (R)-topology on E’ where (R) consists of all
precompact subsets of E.

(3) E is called a S-space if on E’, ew* =p.
(4) E is called a B-complete if a linear continuous and almost

open mapping of E onto any locally convex vector space F is open.
(5) E is called a B([)-space if it satisfies the following state-

ment; For each barrelled space F, a linear and continuous mapping

of E onto F is open.
Let E and F be normed spaces, U and V their closed unit balls

respectively. A continuous linear mapping T of E in F is called a
nuclear mapping if there exists a continuous linear form an e E’ and

Yn e F such that the following holds
Tx= , x, any for xeE

and
Pvo(an)Pv(y)< + c.

For each nuclear mapping T define the norm"

:(T)= inf {Z Po(a)P(y)).

Let (E, F) be the set of all nuclear mappings of E into F, we in-
troduce a norm in (E, F) by (T). Let _(E, F) be the set of all con-

tinuous linear mappings of E into F, let (E, F) be the set of all

mappings t e .(E, F)such that t(E) is a finite dimentional subspace
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of F, then we have the following
Proposition 1o A(E, F) is a dense subspace in (E, F).
Proof. For any T e (E, F), it has the orm

Tx- F. x, anYn, al, ..., a e E, y.,, ..., y e F.

Therefore (E, F) is a linear subspace of (E, F). Next, for any
T e 7(E, F) there exists a continuous linear orm a e E and elements
y e F such that

Tx- F, x, an Yn for x e E,
N

and

E Pv(a)Pr(Y) + c.

Let (N) be the family of all finite subsets of N, then for arbitrary
)0 there exists No e (N) such that

E Pv(an)Pv(Yn) "N\ No

Now we define the mappin T (E, F) by

Tx- F, x, any.

Then there exists No such that
(T-- T) =< for all N>= No( e (N)).

This implies
lim T T.

The proof is complete.
Thus we have immediately the following
Corollary. Each nuclear mapping is precompact.
Let E be a locally convex space and U any closed and absolutely

convex neighborhood of the origin in E. Let
P(x)-inf{p>O;xepU} for xeE,

and
E(U)=E/{x e E ;Pv(x)=O}.

Then we introduce a topology on E(U) by the norm
][x(U) ll=Pv(x) for x(U) e E(U)

where x(U) corresponds to x e E in a natural way. For each closed
and absolutely convex bounded subset A in locally convex space E,
we define a linear subspace E(A) of E by

E(A)-{xeE;xefA orany p0},
and topology of E(A) is introduced by the norm

P(x)-inf {p0; x e pA} or x e E(A).
The following proposition is an important assertion.
Proposition 2. Any bounded subset of nuclear space E is pre-

compact.
Proof. We can assume without loss of generality that each



348 S. FUNAKOSI [Vol. 44,

bounded set is closed and absolutely convex bounded set, because there
exists a closed and absolutely convex bounded set which contains a
bounded set. In the nuclear space E, for any closed and absolutely
convex neighborhood 0 the origin there exist a closed and absolutely
convex bounded set such that the canonical mapping from the normed
space E(A) in the normed space E(U) is nuclear. By Proposition 1,
this canonical mapping is a precompact. Therefore, if we denote

A(U)-{x(U) e E(U); x e A},
then A(U) is precompact. There exists finite elements x,, x,,..., x
of E such that

A(U). [J {xn(V - U(U)}, V(V) {x(V) e E(V) x e V}.

This implies A_ {Xn+ U}. Therefore A is a precompact subset.

Definition 2. Let E be a locally convex vector space. Let
denote a collection of u-compact subset E. The k-extension k(u, )
of the topology u is defined as follows; A set V is k(u, )-open if and
only if V C is open in the relative u-topology of C for each C in .

Proposition . A nuclear space E is a S-space if on its dual E’,
ew$-.

Proof. By Proposition 2, and the hypothesis, -p-ew* on E’.
Therefore E is a S-space. The following Lemma is due to [3].

Lemma 1. Let E be a metrizable topological vector and the
collection of all u-compact subset of Eu. Then u-k(u, ) is a vector
topology.

Theorem 1. Let E be a nuclear space with a countable funda-
mental system of u-bounded set. Then E is a S-space.

Proof. By Definition 1. (1) and Definition 2, ew*-k(a,’)
=k(, ’), where ’ is the collection of all a(E’,E)-closed convex
equicontinuous sets of E’. Let denote the class of all fl-compact
convex sets in E’. Each fl-compact convex set is a(E’, E)-compact,
then k(fl,)k(fl, ’). Therefore we have

(, )>(, ’)=ew*>.
But E contains a countable fundamental system o u-bounded sub-
sets by hypothesis, hence fl is metrizable, by Lemma 1,

ew*.
This shows that E is a S-space by proposition 3.

Since a complete S-space is B-complete [3], we have the ollowing
Corollary. The complete nuclear space with a countable funda-

mental system of u-bounded set is B-complete.
Definition . Let E be a locally convex space and E’ its dual.
(1) If only all countable strong bounded subset of E are equi-
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continuous, then E is called a a-quasibarrelled.
(2) Let E be a a-quasibarrelled, if there exists a countable funda-

mental system of bounded subset in E, then E is called a dualmetric.
The ollowing Lemma is due to [5].
Lemma 2o Let E be a metrizable locally convex space and E its

dual. Then E’, endowed with any locally convex topology finer than
a(E’, E) and coarser than v(E, E), is a B()-space.

In the second paper [2], we shall prove that any nuclear dual-
metric space which is quasicomplete is a Mackey space.

Theorem 2. Let E be a nuclear dualmetric space which is quasi-
complete, then E is a B()-space.

Proof. By Mackey’s theorem, bounded sets under all locally
convex topologies in the band v(E,E’)ua(E,E’) are the same.
Since E is a nuclear space, an arbitrary bounded subset is a precom-
pact by Proposition 2. On the other hand, E is a quasicomplete,
therefore, a(E, E’)-bounded sets are relatively a(E, E’)-compact and
fl=v(E,E) on E. Clearly E’=E’=E where fl=fl(E,E),
v--v(E’, E) and E’ is metrizable by hypothesis. Moreover, E is a
Mackey space (for detail see [2]). Hence by Lemma 2, E is a B()-
space.

J. L. Kelley has studied hypercomplete spaces. He proved that
a topological vector space E is hypercomplete if and only if each ew*-closed
convex circled subset of E is (E, E)-closed. On the other hand T.
usain [3] proved the ollowing heorem. Let E be a complete S-space.
For a convex set M in E to be (E, E)-closed it is necessary and sufficient
that M/ U be (E’, E)-closed for each neighborhood U of 0 in E.
Therefore, it is clear that a complete S-space is hypercomplete. Thus
we have

Corollary,. A nuclear dualmetric space E which is quasicomplete
is hypercomplete space.

2. The purpose of this section is to study that the open mapping
and closed graph theorems on a nuclear dualmetric space. By using
the result Theorem 2 of Section 1, we have immediately the ollowing

Theorem 3. Let F be a barrelled space, and E a nuclear dual-
metric space which is quasicomplete, then

(a) A linear and continuous mapping f of E onto F is open.
(b) A linear mapping g of F into E with the closed graph is

continuous.
Remark. A linear mapping f of dualmetric space into any

locally convex space is continuous if and only if its restriction of the
fundamental system of bounded set on Bn, is continuous (see [6, p.
401]). Dualmetric space is a (DF)-space (see [2]).
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Moreover, we can prove the ollowing
Theorem 4. Let E be a nuclear dualmetric space and F a locally

convex vector space with Baire’s property, then
(a) Each linear mapping of E onto F is almost open.
(b) Each linear mapping of F into E is almost continuous.

Proof. (a) Since E is a dualmetric, there is a countable funda-
mental system o bounded subset B(E)-{B ;n-1, 2, } in E. Also
E is a dualnuclear (see [8]), i.e., or arbitrary subset B e B(E) exist
B e B(E) with BB(; see [8]), and the canonical mapping;
B-B is nuclear. Each nuclear mapping is precompact, so B is
precompact and separable subset of normed space E(B), where E(B)
=(x e E;x e pB or every p)0}. We can define Norm on E(B) by
Ps(x)- inf {p) O x e pB} or x e E(B). Moreover the identical
mapping from E(B) to E is continuous, therefore B is separable
subset of E. We can choose double sequence {X,n} which is dence in
E. Now we replace the double sequence {X,n} with {x}e. Let U
and V be circled neighborhood of 0 in E such that V+ Vc U. Then
clearly

U {x + V}=E and F-f(E)- {f(x + V)- (.j {f(Xn)+ f(V)}.
n_l nl n_l

Since F has a Baire’s property, at least for one n, f(Xn)+ f(V)--f(Xn)
+ f(V) has an interior point. Since f(V) and f(Xn)+ j’V) are homeo-
morphic, (V) has an interior point y. Since V is a circled neighbor-
hood,/(V) is a circled, thus, O-y-y is an interior point o

f(V) + f(V)cf(V) + f(V)=f(V+ V)f(U).
Hence, f is almost open mapping.

(b) This part follows clearly from (a).
Combining this theorem with Corollary of Theorem 1, we have

the following

Corollary. Let E be a nuclear dualmetric space which is quasi-
complete and F a locally convex vector space with Baire’s property,
then each Linear continuous mapping E onto F is open.
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