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80. On Nuclear Spaces with Fundamental System
of Bounded Sets. I

By Shunsuke FUNAKOSI
(Comm. by Kinjir6 KUNUGI, M. J. A., May 13, 1968)

We consider a nuclear space with a fundamental system of
bounded sets. In this paper, we consider the open mapping and
closed graph theorems in the nuclear space.

For nuclear spaces and its related notion see [8]. Most of the
definitions and notations of locally convex spaces are taken from N.
Bourbaki [1] and T. Husain [4].

1. In this section, we consider under what conditions nuclear
space is the space with the open mapping and closed graph theorems.

Definition 1. Let E be a locally convex vector space and E’ ils
dual.

(1) ew*-topology is defined to be the finest topology on E’ which
coincides with o(E’, E) on each equicontinuous set of E’.

(2) p-topology is the S-topology on E’' where & consists of all
precompact subsets of E.

(8) E is called o S-space if on E’, ew*=p.

(4) E is called a B-complete if o linear continuous and almost
open mapping of E onto any locally convex vector space F' is open.

(5) E 1is called a B(9)-space if it satisfies the following state-
ment; For each barrelled space F, a linear and continuous mapping
of E onto F is open.

Let E and F be normed spaces, U and V their closed unit balls
respectively. A continuous linear mapping T of E in F is called a
nuclear mapping if there exists a continuous linear form a, ¢ E’ and
Y, € F such that the following holds;

Te=Y,<%, 04, >Y, for xzek
and !
}1‘; Pyo(a,)Py(yY,) < + oo.
For each nuclear mapping T define the norm:
v(T)=inf {% Pyo(a,)Py(y.)}.
Let JU(E, F) be the set of all nuclear mappings of E into F, we in-
troduce a norm in JUE, F) by v(T). Let L(E, F) be the set of all con-

tinuous linear mappings of E into F, let J(E, F) be the set of all
mappings t e L(E, F) such that ¢(E) is a finite dimentional subspace
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of F', then we have the following
Proposition 1. J(E, F) is a dense subspace in JUE, F).
Proof. For any T e J(FE, F), it has the form

K
Tx=21<x,an>ym a’l,""a'keE’ yl,"',ylceF-
n=

Therefore A(E,F) is a linear subspace of JI(E, F). Next, for any
T ¢ JUE, F) there exists a continuous linear form a, ¢ E and elements
Y. € F such that

Te=Y,<%,a,>y, for xek,
N

and
z; Pyo(a,)Py(y,) < + co.

Let 9(N) be the family of all finite subsets of N, then for arbitrary
0>0 there exists N, e 9(N) such that

Z PUo(a'n)PV(yn)ga.

N\ No

Now we define the mapping T, ¢ J(E, F) by
Tyx= ;‘, <Xy Wy >Yne
Then there exists N, such that
(T—-T,y<0 forall N=N((e d(N)).
This implies
y— li}m Ty=T.

The proof is complete.

Thus we have immediately the following

Corollary. FEach nuclear mapping is precompact.

Let E be a locally convex space and U any closed and absolutely
convex neighborhood of the origin in . Let

Py(x)=inf {p>0; 2 pU} for xzeckE,
and
EWU)=E/{x e E ;Py(x)=0}.
Then we introduce a topology on E(U) by the norm
[|2(U)||=Py(x) for =z(U)e EU)
where x(U) corresponds to ¢ E in a natural way. For each closed
and absolutely convex bounded subset A in locally convex space FE,
we define a linear subspace E(A) of E by
EA)={xeE;xe fA forany p>0},
and topology of E(A) is introduced by the norm
P, x)=inf {p>0;xec pA} for zeE(A).

The following proposition is an important assertion.

Proposition 2. Any bounded subset of nuclear space E is pre-
compoact.

Proof. We can assume without loss of generality that each
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bounded set is closed and absolutely convex bounded set, because there
exists a closed and absolutely convex bounded set which contains a
bounded set. In the nuclear space E, for any closed and absolutely
convex neighborhood of the origin there exist a closed and absolutely
convex bounded set such that the canonical mapping from the normed
space E(A) in the normed space E(U) is nuclear. By Proposition 1,
this canonical mapping is a precompact. Therefore, if we denote
A)={x(U)e E(U); x e A},

then A(U) is precompact. There exists finite elements x,, z,, - - -, %,
of F such that

A LZ{%(UH v}, U)={x(U)eE®U);xe U}

S
This implies AC U{®,+ U}. Therefore A is a precompact subset.
n=1

Definition 2. Let E be a locally convex vector space. Let B
denote a collection of u-compact subset E. The k-extension k(u, B)
of the topology u is defined as follows; A set V is k(u, B)-open if and
only if VN C is open in the relative u-topology of C for each C in B.

Proposition 3. A nuclear space E is a S-space if on its dual E’,
ew*=f3.

Proof. By Proposition 2, and the hypothesis, f=p=ew* on E’.
Therefore E is a S-space. The following Lemma is due to [3].

Lemma 1. Let E, be a metrizable topological vector and B the
collection of all u-compact subset of E,. Then u==k(u, $) is a vector
topology.

Theorem 1. Let E be a nuclear space with a countable funda-
mental system of u-bounded set. Then E is a S-space.

Proof. By Definition 1. (1) and Definition 2, ew*=Fk(s, F)
=k(B, #'), where &' is the collection of all ¢(E’, E)-closed convex
equicontinuous sets of E’. Let @ denote the class of all S-compact
convex sets in E’. Each B-compact convex set is ¢(E’, E)-compact,
then k(8, B)>k(B, B’'). Therefore we have

kB, B> k(B, B)=ew*> f.
But E, contains a countable fundamental system of uw-bounded sub-
sets by hypothesis, hence 8 is metrizable, by Lemma 1,
B=Ek(B, B)=ew*.
This shows that E, is a S-space by proposition 3.

Since a complete S-space is B-complete [3], we have the following

Corollary. The complete nuclear space with a countable funda-
mental system of u-bounded set is B-complete.

Definition 3. Let E be a locally convex space and E’ its dual.

1) If only all countable strong bounded subset of E are equi-
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continuous, then E is called a o-quasibarrelled.

(2) Let E be a g-quasibarrelled, if there exists a countable funda-
mental system of bounded subset in E, then E is called a dualmetric.

The following Lemma is due to [5].

Lemma 2. Let E be a metrizable locally convex space and E’ its
dual. Then E’, endowed with any locally convex topology finer than
o(E’, E) and coarser than t(E’, E), is a B(<)-space.

In the second paper [2], we shall prove that any nuclear dual-
metric space which is quasicomplete is a Mackey space.

Theorem 2. Let E be a nuclear dualmetric space which is quasi-
complete, then E is a B()-space.

Proof. By Mackey’s theorem, bounded sets under all locally
convex topologies in the band (K, E’)>u>o(E,E’) are the same.
Since E is a nuclear space, an arbitrary bounded subset is a precom-
pact by Proposition 2. On the other hand, E is a quasicomplete,
therefore, o(E, E’)-bounded sets are relatively (%, E’)-compact and
B=t(E,E) on E’. Clearly E'*=E<=FE where B=pFE’,E),
r=7(E’, E) and E’* is metrizable by hypothesis. Moreover, E is a
Mackey space (for detail see [2]). Hence by Lemma 2, E is a B(9)-
space.

J. L. Kelley has studied hypercomplete spaces. He proved that
a topological vector space E is hypercomplete if and only if each ew*-closed
convex circled subset of E’ is G(E’, E)-closed. On the other hand T.
Husain [3] proved the following theorem. Let E be a complete S-space.
For a convex set M’ in E’ to be ¢(E’, E)-closed it is necessary and sufficient
that M'NU° be ¢(E', E)-closed for each neighborhood U of 0 in E.
Therefore, it is clear that a complete S-space is hypercomplete. Thus
we have

Corollary. A nuclear dualmetric space E which is quasicomplete
1s hypercomplete space,

2. The purpose of this section is to study that the open mapping
and closed graph theorems on a nuclear dualmetric space. By using
the result Theorem 2 of Section 1, we have immediately the following

Theorem 3. Let F be a barrelled space, and E o nuclear dual-
metric space which is quasicomplete, then

(a) A linear and continuous mapping f of E onto F' is open.

(b) A linear mapping g of F into E with the closed graph is
continuous.

Remark. A linear mapping f of dualmetric space into any
locally convex space is continuous if and only if its restriction of the
fundamental system of bounded set on B,, is continuous (see [6, p.
401]). Dualmetric space is a (DF)-space (see [2]).
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Moreover, we can prove the following

Theorem 4. Let E be a nuclear dualmetric space and F o locally
convex vector space with Baire’s property, then

(a) FEach linear mapping of E onto F is almost open.

(b) FEach linear mapping of F into E is almost continuous.

Proof. (a) Since E is a dualmetric, there is a countable funda-
mental system of bounded subset B(E)={B,;n=1,2,...}in E. Also
E is a dualnuclear (see [8]), i.e., for arbitrary subset B, ¢ B(F) exist
B, ¢ B(F) with B,<B,(<; see [8]), and the canonical mapping;
B,—B,, is nuclear. Each nuclear mapping is precompact, so B, is
precompact and separable subset of normed space E(B,,), where E(B,,)
={xeE;xe pB, for every p>0}. We can define Norm on E(B,) by
Py (x)=inf {p>0;xc pB} for zec E(B,). Moreover the identical
mapping from E(B,) to E is continuous, therefore B, is separable
subset of E. We can choose double sequence {z,,,} which is dence in
E. Now we replace the double sequence {2, ,} with {®,},cy. Let U
and V be circled neighborhood of 0 in F such that V4+VcU. Then
clearly

nLil{x,,+ V}=E and F=f(E)=nLé1{f(xn+ V)=7gl{f(x")+f(V)}.

Since F has a Baire’s property, at least for one n, f(x,)+ f(V)=f(x,)
+ F(V) has an interior point. Since f(V) and f(x,)+ f(V) are homeo-
morphic, F(V) has an interior point y. Since V is a circled neighbor-
hood, (V) is a circled, thus, 0=y —v is an interior point of
TN+ TN fW+7fV)=7fV+V)c f(D).

Hence, f is almost open mapping.

(b) This part follows clearly from (a).

Combining this theorem with Corollary of Theorem 1, we have
the following

Corollary. Let E be a nuclear dualmetric space which is quasi-
complete and F o locally convex vector space with Baire’s property,
then each Linear continuous mapping E onto F is open.
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