79. On Banach Function Spaces

By Riichirô MURAKAMI

(Comm. by Kinjirô KUNUGI, M. J. A., May 13, 1968)

The theory of Riesz spaces (i.e. a normed vector lattice) plays an important role in the theory of normed function spaces. The theory have been developed by W. A. J. Luxemburg and A. C. Zaanen (see [1], [2]).

First I explain some terminologies (see [2]). Let X be a nonempty set and μ a non-negative, countable additive measure on X. We denote by (X, \sum, μ) a σ -finite measure space. Let M be the set of all real valued, μ -measurable functions on X, and M^+ the set of all non-negative functions of M. A function seminorm ρ is a mapping of M^+ into the real numbers and has the seminorm properties and $\rho(u) \leq \rho(v)$ if $u(x) \leq v(x)$ almost everywhere on X. We extend the domain of ρ to the whole M by defining $\rho(f) = \rho(|f|)$. The normed function space L_{ρ} is the set of $f \in M$ such that $\rho(f) < \infty$. We assume that there is at least one $f \in M$ such that $0 < \rho(f) < \infty$. We introduce two function seminorms ρ_1 , ρ_2 as follows

$$\rho_1(f) = \sup_{\rho(g) \leq 1} \left\{ \int |fg| d\mu \right\}, \qquad \rho_2(f) = \sup_{\rho_1(g) \leq 1} \left\{ \int |fg| d\mu \right\}.$$

A measurable subset B of X is called ρ -purely infinite, if $\rho(\chi_c) = \infty$ for every $C(\subset B)$ of positive measure. ρ is called a saturated function seminorm if there is no ρ -purely infinite subsets. There is no loss of generality even if we remove the maximal ρ , ρ_1 -purely infinite sets X_{∞} , X'_{∞} from X (see Theorem 12. 1 in [2]). Then ρ , ρ_1 , ρ_2 become the saturated function norms. We only use saturated function norms. Under this assumption, there is a sequence (π) ; $X_n \uparrow X$ such that $0 < \mu(X_n) < \infty$ and $0 < \rho(\chi_{X_n}) < \infty$ (see Theorem 8.7 in [2]). We call such a sequence $(\pi): X_n \uparrow X$ a ρ -exhaustive sequence. We introduce the partial ordering in L_{a} by the following way: $f \leq g$ if and only if $f(x) \le g(x)$ almost everywhere on X. Then L_a is a Riesz space with respect to the above ordering. Futher every nonempty subset of L_{ρ} which is bounded from above has a least upper bound in L_{ρ} , and it can be obtained by picking out an appropriate increasing sub-Such a Riesz space is called super Dedekind complete. sequence.

Let L_{ρ}^{*} be the Banach dual of L_{ρ} , and $L_{\rho,c}^{*}$ the subset of L_{ρ}^{*} having the following property; $F(\in L_{\rho}^{*})$ belongs to $L_{\rho,c}^{*}$ if and only if $|f_{n}(x)|\downarrow 0$ (a.e) implies $F(|f_{n}|) \rightarrow 0$.

We shall now define two subsets of L_{ρ} as follows.

 $L_{\rho}^{a} = \{ f \in L_{\rho} : |f| \ge u_{1} \ge u_{2} \ge \cdots \downarrow 0 \text{ then } \rho(u_{n}) \rightarrow 0 \}.$

 L^{π}_{ρ} is the norm closure of the ideal generated by

 $\{\chi_{x_n}: X_n \in (\pi): \rho$ -exchaustive sequence $\}$.

The latter definition has the meaning by the fact that ρ is a saturated function norm. To prove a fundamental theorem, we need

Lemma 1. $\rho_1(g) = \sup\left\{ \int |fg| d\mu : f \in L^{\pi}_{\rho}, \rho(f) \leq 1 \right\}.$

Proof. For α satisfying $\rho_1(g) > \alpha$, we can take $f_0 \in L_{\rho}$ such that $\rho(f_0) \le 1$ and $\int |f_0g| d\mu > \alpha$. For each n we put $f_n = \text{Min } (f_0, n\chi_{Xn})$ (where $X_n \in (\pi)$), then $\{f_n\} \subset L_{\rho}^{\pi}$ and $|f_ng| \uparrow |f_0g|$. There is a number n_0 such that $\int |f_mg| d\mu \ge \alpha$ for any $m \ge n_0$ and $\rho(f_m) \le \rho(f_0) \le 1$. Hence we have $\sup \{\int |fg| d\mu : f \in L_{\rho}^{\pi}, \rho(f) \le 1\} > \alpha$. Therefore $\rho_1(g) \le \sup \int |fg| d\mu : f \in L_{\rho}^{\pi}, \rho(f) \le 1\}$. The another inequality is trivial.

Corollary 1. The next statements are equivalent.

(i) A μ -measurable function f belongs to L_{μ} .

(ii) $\int |fg| d\mu < \infty$ for every g in L^{π}_{ρ} , and $F(g) \equiv \int fg d\mu$ is a bounded linear functional on L^{π}_{ρ} .

Proof. $L_{\rho}^{\pi} \subseteq L_{\rho}$ implies (i) \rightarrow (i). Next we shall prove (ii) \rightarrow (i). For any g in L_{ρ}^{π} , we put $g_1 = |g|/sgnf$. By the hypothesis $\int |fg|d\mu = \int fg_1d\mu = F(g_1) \leq ||F||\rho(g) < \infty$ holds. Therefore by Lemma 1, we have $\rho_1(f) < \infty$, i.e. $f \in L_{\rho_1}$.

The next theorem was first proved by W. A. J. Luxemberg with the hypothesis that L_{ρ} is complete with respect to the function norm ρ , but without this hypothesis we can prove it.

Theorem 1. In order that $G \in L_{\rho}^{*}$ belongs to $L_{\rho_{1}}$, it is necessary and sufficient that $G(f_{n})$ tends to zero for every sequence $f_{n} \in L_{\rho}$ satisfying $f_{n}(x) \downarrow 0$ on X.

Proof of necessity. For $G \in L_{\rho_1}$, there is a $g \in L_{\rho_1}$ such that $G(f_n) = \int f_n g d\mu$. If $f_n \downarrow 0$, then $G(f_n) \rightarrow 0$.

Proof of sufficiency. There is a ρ -exhaustive sequence $(\pi):X_n \uparrow X$. For any μ -measurable set $E \subset X_1$, we define a set function F(E) by $F(E) = G(\chi_E)$. It is a countably additive, μ -absolutly continuous set function. Therefore by Radon-Nikodym Theorem, there is an integrable function g(x) on X_1 such that $F(E) = G(\chi_E) = \int g\chi_E d\mu$ for any measurable set $E \subset X_1$. By the same argument for $X_2, X_3, \cdots G(\chi_E) = \int g\chi_E d\mu$ holds for any measurable set E included in some X_n . For any step functions f(x) on some $X_i \in (\pi)$, the same equality holds. For any non-negative, bounded functions f(x) whose support is contained in some X_n , $G(f) = \int fg d\mu$ holds.

Even if f is not non-negative, the same argument can be applied, and

$$G(f) = \int fg d\mu$$

holds for any $f \in L^{\pi}_{\rho}$.

Next we show that g is a member of L_{ρ_1} . G(f) is bounded on L_{ρ}^{π} , hence $\int |fg| d\mu < \infty$ holds for any $f \in L_{\rho}^{\pi}$. Therefore by Corollary 1, $\rho_1(g) < \infty$, i.e. $g \in L_{\rho_1}$. Next we show that for any $f \in L_{\rho}$, $G(f) = \int fgd\mu$. There exists $\int fgd\mu$ for any $f \in L_{\rho}$. For simplicity we suppose that $f \ge 0$. For each n, we put $f_n = \operatorname{Min}(f, n\chi_{x_n})$. Since $f_n \in L_{\rho}^{\pi}$ we have $G(f_n)$ $= \int f_n gd\mu$, and by the dominated convergence Theorem we have $\int f_n gd\mu$ $\rightarrow \int fgd\mu$. Therefore $G(f_n) \rightarrow \int fgd\mu$. Since $f - f_n \in L_{\rho}$ and $f - f_n \downarrow 0$, we have $G(f - f_n) \rightarrow 0$ by the hypothesis. Therefore $G(f) = \int fgd\mu$.

Corollary 2. $L_{\rho,c}^* = L_{\rho_1}$.

Proof. If $G(\in L_{\rho}^{*})$ belongs to $L_{\rho_{1}}$, then from Theorem 1 $G(f_{n}) \rightarrow 0$ for any $f_{n} \in L_{\rho}$ such that $f_{n} \downarrow 0$ (a.e.). Therefore we have $G \in L_{\rho,c}^{*}$. Next if $G \in L_{\rho}^{*}$ belongs to $L_{\rho,c}^{*}$, then by the definition of $L_{\rho,c}^{*}$, we have $G(f_{n}) \rightarrow 0$ for any $f_{n} \in L_{\rho}$ satisfying $f_{n} \downarrow 0$ (a.e.). It follows from Theorem 1 that $G \in L_{\rho_{1}}$. Therefore we have the desired results $L_{\rho,c}^{*}$ $=L_{\rho_{1}}$.

If ρ is a function norm, $\{f \in L_{\rho}: G(f)=0 \text{ for any } G \in L_{\rho,c}^*\}=\{0\}$ holds (see Theorem 15.2 in [2]). Therefore from Corollary 2 $\{f \in L_{\rho}: G(f)=0 \text{ for any } G \in L_{\rho,c}^*\}=\{0\}$ holds. Furthere ρ is a saturated function norm, the sequence $\{\chi_{Xn}: X_n \in (\pi)\}$ is a countable basis of L_{ρ} . By the above result, we have two Theorems obtained by W. A. J. Luxemberg and A. C. Zaanen (see Theorem 25, 10, and Corollary 24.3 in [2]).

Theorem A. The next conditions are equivalent.

(i) L^a_{ρ} is order dense in L_{ρ} (i.e. the ideal generated by L^a_{ρ} coincides with L_{ρ}).

(ii) $(L^a_{\rho})^* = L^*_{\rho,c}$ (algebraically and isometrically).

(iii) $L_{\rho}^{a} = L_{\rho}^{\pi}$ for at least one ρ -exhaustive sequence (π).

Theorem B. $L_{\rho}^* = L_{\rho,c}^*$ if and only if $L_{\rho} = L_{\rho}^a$.

Corollary 3. $L_{\rho}^* = L_{\rho_1}$ if and only if $L_{\rho} = L_{\rho}^a$.

Proof. By Corollary 1 and Theorem B, Corollary 3 follows.

Theorem 2. (i) Suppose that $u_n \uparrow u$ (a.e.) and $\lim \rho(u_n) < \infty$ implies $\rho(u) < \infty$. $L_{\rho} = L_{\rho}^{**}$ (algebraically) holds if and only if $L_{\rho} = L_{\rho}^{a}$ and $L_{\rho_1} = L_{\rho_1}^{a}$. (ii) Suppose $u_n \uparrow u$ (a.e.) implies $\rho(u_n) \uparrow \rho(u)$. (i.e. Fatou property) Then $L_{\rho} = L_{\rho}^{**}$ (algebraically and isometrically) holds if and only if $L_{\rho} = L_{\rho}^{*}$ and $L_{\rho_1} = L_{\rho_1}^{*}$.

Proof. (i) From the assumption, it follows that $L_{\rho} = L_{\rho_2}$ (algebraically) (see Theorem 7.7 in [2]).

Necessity. Suppose $0 \leq u_n \downarrow 0$ in $L_{\rho} = L_{\rho}^{**}$, then for any G in L_{ρ}^{*} , we have $G(u_n) = u_n(G) \rightarrow 0$. By the difinition of $L_{\rho,c}^{**}$, it follows that $L_{\rho}^{*} = L_{\rho,c}^{**}$ and $L_{\rho} = L_{\rho}^{*}$ by Corollay 3. By the same way if $0 \leq u_n \downarrow 0$ in L_{ρ}^{*} , then for any f in $L_{\rho}^{**} = L_{\rho}$, it follows $f(u_n) = u_n(f) \rightarrow 0$. We have $L_{\rho_1}^{**} = (L_{\rho_1})_c^{**}$ and $L_{\rho_1} = L_{\rho}$, and consequently $(L_{\rho}^{**})^{**} = (L_{\rho,c}^{**})^{**} = (L_{\rho,c}^{**})_c^{**} = (L_{\rho,c}^{**})_c^{**}$. Therefore we have $L_{\rho_1}^{**} = (L_{\rho_1})_c^{**}$ and $L_{\rho_1} = L_{\rho}^{**}$.

Sufficiency. If $L_{\rho} = L_{\rho}^{a}$, then $L_{\rho}^{*} = L_{\rho_{1}}$ holds from Corollary 3. By the same way above we have $L_{\rho_{1}}^{*} = L_{\rho_{2}}$ from $L_{\rho_{1}} = L_{\rho_{1}}^{a}$, therefore we have $L_{\rho}^{**} = (L_{\rho_{1}})^{*} = L_{\rho_{2}}$. And $L_{\rho} = L_{\rho_{2}}$ (algebraically) holds, the first assurtion was obtained.

(ii) $\rho = \rho_2$ holds if and only if ρ satisfies the hypothesis. Therefore we have $L_{\rho}^{**} = L_{\rho}$ algebraically and isometrically. This completes the proof of (ii).

Lemma 2. If $0 \leq u_n \downarrow (a.e.)$ in L_{ρ} , and $\varphi(u_n) \rightarrow 0$ for every φ in L_{ρ}^* (the sequence converges weakly to zero), then $\rho(u_n) \downarrow 0$ (the sequence converges strongly to zero).

Proof. By the difinition of $L_{\rho;c}^*$, we have $L_{\rho}^* = L_{\rho,c}^*$. Then by Theorem B, we have $L_{\rho} = L_{\rho}^a$ and $\rho(u_n) \downarrow 0$.

Theorem 3. If L_{ρ}^{a} is order dense in L_{ρ} , we have $\rho = \rho_{2}$ on L_{ρ}^{a} .

Proof. Since L_{ρ}^{a} is order dense in L_{ρ} , we have $L_{\rho,c}^{*}=(L_{\rho}^{a})^{*}$ by Theorem A. If $f_{n}\downarrow 0$ (a.e.) in L_{ρ}^{a} , it follows that $\varphi(f_{n})\rightarrow 0$ for any φ in $(L_{\rho}^{a})^{*}=L_{\rho,c}^{*}$. By Lemma 2, $\{f_{n}\}$ converges to zero with the norm on L_{ρ}^{a} .

Let the sequence $\{g_n\}$ be $g_n \uparrow g$ (a.e.) in L_{ρ}^a , $0 \leq g - g_n \downarrow 0$ in L_{ρ}^a . Then $\rho(g-g_n)$ converges to zero, and $\rho(g) \leq \rho(g_n) + \rho(g-g_n)$, we have $\rho(g_n) \uparrow \rho(g)$. Therefore ρ has the Fatou property, and we obtain $\rho = \rho_2$ on L_{ρ}^a .

Corollary 4. If $L_{\rho}^{a} = L_{\rho}^{*}$ (or equivalently L_{ρ}^{a} is order dense in L_{ρ}), $P^{+} = \{ u \in L_{\rho} : \rho(u) = \rho_{2}(u) \}$ is order dense.

Proof. By Theorem 3, P^+ coincides with L^a_{ρ} .

References

- W. A. J. Luxemberg: Banach function spaces. Thesis Delft Inst. Techn., Assen (Netherland) (1955).
- [2] W. A. J. Luxemberg and A. C. Zaanen: Notes on Banach function spaces. Proc. Acad. Sci., Amsterdam Note I, II, A 66, 135-153 (1963), Note III, IV, A 66, 239-263 (1963), Note V, A 66, 496-504 (1963), Note VI, VII, A 66, 655-681 (1963).

No. 5]