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71. Calculus in Ranked Vector Spaces. IV

By Masae YAMAGUCHI
Department of Mathematics, University of Hokkaido

(Comm. by Kinjir6 KVNVGr, M. J. A., May 13, 1968)

1.9. The special case. (1.9.1) Proposition. Let E be anormed
vector space, {xn} a sequence of E and x e E. Then for a sequence
{Xn} converges to x in the sense of ranked vector space it is necessary
and sufficient that it converges to x in the sense of norm, i.e.,

{lim Xn} x==}limllx-xll=O.
Proof. (a) Suppose that {limx} s x, i.e., there exists a se-

quence (U(x)} of neighborhoods of the point x and a sequence {a} of
integers such that,

Uo(x) U(x) U(x) Un(X) ", 0 <_n< o90,

ao<_a <_a<_ <_c <_ 0_<n<w0,
sup a 090, U(x) x, and U(x) e 3,

or n-O, 1, 2, ....
By (1.6.6), each U(x) is written in the following form, using

U(x) e 3,
U(x)=x+ V(0), n=0, 1, 2,

where V..(O)= {x; llxll<-}.
For every e>O, there exists a positive number N, using sup a

o90, such that

n>_N 1--<.
On

Since U(x)=x+ V.(O) x, V.,(O) Xn--X
1

". IlXn--Xll<.
O[n

Thus if n >_ N, then

On
.’. lim

(b) Suppose eoversely that lirnltXn-Xll-O, then, for 1, there
exists a positive number n such that

.’. VI(O) Xn--x, Xn+I--X, ..., Xn:+i--X,
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for __1 there exists a positive number n (> n) such that
2’

1

". V2(O) Xn.-x, Xn+I--X, ..., Xn+--X,
for 1, there exists a positive number n (>n_) such that

m

n>_nllx--xll<1,
m

.’. V(O) x-x, x/-x, ..., x+-x, ....
Let V(0)+ x-U(x) for m=0, 1, 2, .., then we have a sequence

{U(x)} of neighborhoods of the point x such that
U(x) U(x) U(x) U(x)

U(x) x, U(x) e , and nnn. n. ..
Now we define a sequence {U(x)} by

U(x)- U(x) x U(x) e an--1
U+(X)= U(x) x+ U+(x) e an+= 1

U:_(x)- U(x) x._ U_( ) e a:_ 1
U(x) U(x) x: U:(x) e -2
U(x)- U(x) x. U(x) e an=3.

Thus we obtain a sequence {U(x)} of neighborhoods of the point x
and a sequence {an} of integers such that

U(x)U+(x)U,+. U+(x).

U+(x) x+, sup a+=w0, and Un+(x) e +.
.’. {lim x+} x.

By (1.2.3) we have
{lim x} x.

(1.9.2) Proposition. Let E be a normed vector space and {xn} a
sequence of points in E. Then for a sequence {xn} in E to be a quasi-
bounded sequence it is necessary and sufficient that the sequence
{llxn]l} is bounded.

Proof. (a) Suppose that {x.} is a quasi-bounded sequence. If
our assertion were false, then there would exists a subsequence {x}
such that

ItXnoll<llXnl]l<llXnll< <llXntll<
and lim IIxl]- c.
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Then 1 0 for i-c

and 1 .x -1 xll -c for i--.c.
Xn

This contradicts that by (1.7.4) {x} is a quasi-bounded sequence.
Therefore { ]x]]} is bounded.
(b) Suppose conversely that (]x ]} is bounded, i.e., there exists

a number M such that
]]x<M, n=0, 1, 2, ....

Let {g} be a sequence in with Z0, then we have
Og]Zx<z]i.

Since ,M0 for n,
I]Zx]]o0 for no.

That is, (x} is a quasi-bounded sequence.
(1.9.3) Proposition. If E is a normed vector space, then it is a

separated ranked vector space.
Proof. It suffices to show that E satisfies (1.4.1) axiom (T0).

For this let x, y be arbitrary elements in E and x#y. i.e.,
]x-y[-2a>O.

I a. Suppose thatWe can find a positive integer N such that

m, n2N, U(x) e , and V(y) e . If x’ e U(x), since by (1.6.6) U(x)
=x+ V(0), it can be written in the following way"

X X X,

where xe V(0). Using V(0)=-x;]]x]]<,- we have
m

m... ]x’-x]<a.
Analogously, if y’e V(y), then

Now

.’. IIx’--yll>a .’. x’ V(y)... y(x)V(y)=.
That is, the axiom (To) holds in E, and therefore E is a separated
ranked vector space.

(1.9.4) Proposition. Let E be a normed vector space, {x} a
sequence in E and x e E. Then for {x} converges to x in the sense of
ranked vector space it is necessary and sufficient that {x} converges
to x in the sense of L-convergence, i.e.,

{lira x} x::{Lira x} x.
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Proof. By (1.8.3), it suffices to prove that {lim x} 9 x implies
{Lim x} x.

Suppose that {lim x} x. By (1.9.1), we have

Each x-x can be represented in Che following form’

Xn--X=IIX--Xll X--X

where IIx-xll-O and, since x-x I1=1 for n-0 1,2,...,

x-x . is a quasi-bounded sequence in E.
iix-xi

.’. {Lira (x--x)} 0.

.’. {Limx} 9x.

2. Differentiabilit and derivatives. In this section, the defini-
tion of differentiability is given and the most elementary results of
calculus are proved.

2.1. Remainder. (2.1.1) Definition. Let r" EE be a map
between ranked vector spaces E, E. Then we associate to r a new
map " EE defined by

(, x)--r(2x) if 2 0

=0 if 2=0.
(2.1.2) Definition. A map r’EE: is called a remainder, and

we write r e R(E;E) if and only
() r(0)= 0,
(2) for any quasi-bounded sequence {x} and for a sequence

{2} in such that
{lira ,(2., x)} 0.

xample. The zero map is a remainder.
(2.1.3) Proposition. If r"EE is a remainder, then it is con-

tinuous at the point zero in the sense of L-convergence.
Proof. Let {Lira x} 0, i.e.,

x=2x n=0, 1, 2,
where 20 in and {x} is a quasi-bounded sequence in E.

r(x) r(x)= r(x)

By assumption one has

{lim r(2nX)}9 0,

and so by (1.7.2) r(2x) is a quasi-bounded sequence.
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.’. {Limr(xD} 0.
That is, r" E-.E, is continuous at the point zero in the sense of L-
convergence.

(2.1.4) Proposition. R(E; E) is a vector space, i.e., for any
r, r e R(E E) and for any r, a e Yt,

err+ ar. e R(E E.).
Proof. (1) (a%+ a,.r)(O)= a(r(O)) + a,.(r(O))= O.
(2) Let {x} be a quasi-bounded sequence and {2} a sequence in

such that -0, then

a(r(2x)) + a,.(r(2Xn))

r(x)

Since r, r,. are remainders,
r(2x)lira O, and

n
r(2x)

n

lim r,.(2x)
2

s0.

". {lim t?,+,..(2n, Xn)} O.
.’. ar+ ar,. e R(E E).

Thus R(E;E,.) is a vector space.
(2.1.5) Definition. We denote by L(E;E) the set of all linear

and continuous maps between ranked vector spaces E, E. Then
L(E, E) is also a vector space. Indeed if l, le L(E; E) and
cr, er e Yt, it follows, using l, l e L(E, E), that erl+ aJ. is also linear
and continuous, i.e., al+aj,, e L(E E,.).

Example. The zero map belongs to L(E;E.).
(2.1.6) Lemma. If r e R(E E) and e L(E E), then

1. r e R(E E).
Proof. (1) (1.r)(O)=l(r(O))--l(O)=O.
(2) Let {x} be a quasi-bounded sequence in E, and {2n} a se-

quence in 9t such that 2n-*0, then

Ol.r(2n, Xn)-- (1. r)(2x) l(r(2Xn))

since l" EE. is linear,

By assumption we have

lim r(2Xn) O,

and since I’E--.E. is continuous,
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n
.’. {limt?.(2x)} 0

". 1.r e R(E; E).
(2.1.7) Lemma. Let re R(E;E,.),Ie L(E;E), andr’ e R(E.;E),

then
r’. (1 + r) e R(E1 E3).

Proof. (1) (r’(l+r))(O)=r’(l(O)+r(O))=r’(O)=O.
(2) Let {x} be a quasi-bounded sequence in E and {2} a se-

quence in Y such that 2n-*0, then

t?r,. /r(n, Xn)------I(r’. (1 + r))(nXn).n

Since is linear,

1-[r’(l(2x)+ r(2nX))].

1 [r’(2l(x) + r(nXn)]

r(nXn)

By assumption we have

flim r(2x)} 0.
2n

r(nXn) is a quasi-bounded sequence.Hence
2n

By (1.7.7) {l(Xn)} is

also a quasi-bounded sequence.
r(’x)t2 is a quasi-bounded sequence.that (l(x) /

r’ e R(E; E),

". r’. (1 + r) e R(EI E3).

Therefore it follows from (1.7.5)

Thus, since


