## 111. A Limit Theorem of a Pulse-Like Wave Form for a Markov Process

By Masao NAGASAWA<sup>\*)</sup> Tokyo Institute of Technology and Stanford University (Comm. by Kunihiko KODAIRA, M. J. A., June 12, 1968)

Nagumo, Arimoto, and Yoshizawa [3] discussed the asymptotic behavior of the solution of the following equation, which describes an active pulse transmission line simulating an animal nerve axon,

(1) 
$$\frac{\partial^3 u}{\partial t \partial x^2} = \frac{\partial^2 u}{\partial t^2} + \mu (1 - u + \varepsilon u^2) \frac{\partial u}{\partial t} + u,$$
$$\mu > 0, \quad \frac{3}{16} > \varepsilon > 0, \quad x > 0, \quad t > 0,$$

with the boundary data u(0, x) = 0  $(x \ge 0)$ ,  $\frac{\partial u}{\partial t}(0, x) = 0$   $(x \ge 0)$ , and  $u(t, 0) = \psi(t)$   $(t \ge 0)$ ,  $\psi(t) \equiv 0$  for  $t \ge t_0$ . The equation (1) may be written as a system of equations

(1') 
$$\begin{cases} \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} - \mu \left( u - \frac{1}{2} u^2 + \frac{\varepsilon}{3} u^3 \right) - w \\ \frac{\partial w}{\partial t} = u. \end{cases}$$

They showed experimentally that the solution is a specific pulse-like wave form such that, when t increases, smaller signals are amplified, larger ones are attenuated, narrower ones are widen and those which are wider are shrunk, all approaching a specific wave form; and there is a threshold value to the signal height, and signals below the threshold (or noise) are eliminated when  $t \rightarrow \infty$ .

A probabilistic model for the Nagumo *et al.*'s equation was given in terms of a branching Markov process with age and sign in [2].<sup>1)</sup> Since such a limiting property stated above is new in the theory of Markov processes, it is an attractive problem to discuss the limit theorem<sup>2)</sup> in connection with the probability theory.<sup>3)</sup> The objective

$$\begin{cases} \frac{1}{c} \frac{du}{dt} = \left(u - \frac{u^3}{3}\right) + w, \\ c \frac{dw}{dt} = a - u, \quad \text{(private communication).} \end{cases}$$

<sup>\*)</sup> Research supported in part under grant NSF G. P. 7110 at Stanford University, Stanford, California.

<sup>1)</sup> For branching Markov processes with age and sign cf. also [5].

<sup>2)</sup> Yamaguchi proved some limit theorem for (1') in [6].

<sup>3)</sup> H. P. McKean obtained some results of the problem for FitzHugh's equation, a version of (1'),

of this note is to indicate the fact that the same limit theorem as for an animal nerve axon holds for a simplified probabilistic model.

Consider the following motion: Suppose a particle moving uniformly on a line with speed  $\varepsilon$ , getting older with an exponential holding time  $\exp\left(-\frac{kb}{\alpha\beta}t\right)$ , where  $k>0, 0<\alpha<\beta$ , and  $b=1+\alpha+\beta+\alpha\beta$ ; that is, we are considering the product  $(x_i, k_i)$  of the uniform motion  $x_i$  and a Poisson process  $k_i$  with the rate  $\frac{kb}{\alpha\beta}$  which is independent of  $x_i$ . Suppose there are two worlds marked by  $\{0\}$  and  $\{1\}$  respectively. A particle with age  $(x_i, k_i)$  moving uniformly in the world  $\{0\}$  makes transition, with the exponential holding time  $\exp\left(-\frac{kb}{\alpha\beta}t\right)$ , to a particle of the same age in the world  $\{1\}$  with probability  $|q_1|$ , to two particles in the world  $\{0\}$ , one of which is of the same age and another one of age zero (a baby), with probability  $|q_2|$ , or to three particles in the world  $\{1\}$ , one is of the same age and the other two of age zero, with probability  $|q_3|$ , where

$$q_1 = -\frac{\alpha\beta}{b}, q_2 = \frac{\alpha\beta}{b}, q_3 = -\frac{1}{b}, \text{ and } b = 1 + \alpha + \beta + \alpha\beta.$$

Then they move and get older independently each other until the next transition occurs. Suppose there are *n*-particles in the world  $\{0\}$  ( $\{1\}$ ) at the moment (suppose these *n*-particles constitute a family), then only one member of the family splits into i) one, ii) two or iii) three particles in the same mechanism as above with probability  $|q_1|, |q_2|$  or  $|q_{3}|$ , respectively, while the family (which consists of n, n+1 or n+2particles according to the splitting) immigrates to another world  $\{1\}$ or  $\{0\}$  resp.) if the case i) or ii) has occurred in the splitting, and stays in the same world ( $\{0\}$  or  $\{1\}$  resp.) if the case ii) has occurred. The state of the motion of particles described above is, therefore, specified by a point  $((x^1, k^1), (x^2, k^2), \dots, (x^n, k^n)) \times \{j\}, n = 1, 2, 3, \dots,$  $x^i \in (-\infty, \infty), k^i \in \{0, 1, 2, 3, \dots\}$  and  $j \in \{0, 1\}$ .  $(((x^1, k^1), \dots, (x^n, k^n)))$ represents members of a family and j stands for the world they live in.) Thus the process  $Z_t = ((x_t^1, k_t^1), (x_t^2, k_t^2), \cdots, (x_t^{\epsilon(t)}, k_t^{\epsilon(t)})) \times \{j_t\}$ , where  $\xi(t)$  is the number of particles in a family at t, is a (strong) Markov process<sup>4</sup> (cf. [2]), which will be called a branching uniform motion with age and sign. Set, for a non-negative continuous function f on  $(-\infty, \infty)$  with compact support,

(2) 
$$\widetilde{f \cdot 2}(x, k, j) = (-1)^j \prod_{i=1}^n f(x^i) 2^{|k|},$$

when  $x = (x^1, x^2, \dots, x^n)$ ,  $k = (k^1, k^2, \dots, k^n)$ , where  $|k| = \sum_{i=1}^n k^i$ . Then de-

<sup>4)</sup> A sample path of  $Z_t$  can be understood as a family history.

fine u(t, x) by

(3) 
$$u(t, x) = E_{(x,0,0)}[\widetilde{f \cdot 2}(Z_t)],$$

where  $E_{(t,0,0)}$  denotes the expectation under the condition that a particle of age zero exists at x in the world  $\{0\}$  when t=0. Probabilistic meaning of u(t, x) is given, roughly speaking, as the mean value of the total charge of particles in a family, if we understand that each particle carries charge +1 or -1 according to the world  $\{0\}$  or  $\{1\}$ where the family lives in. Now we have

**Theorem.** Define u(t, x) by (3) for a non-negative continuous function f on  $(-\infty, \infty)$  with compact support. Put  $\Gamma = \{a; f(a) > \alpha\}$ . Then, u(t, x) converges asymptotically to  $\beta \chi_{\Gamma}(x + \varepsilon t)^{\varepsilon_0}$  when t tends to infinity. More precisely,

i) when  $x + \varepsilon t \in \Gamma_1 = \{a; \beta < f(a)\}, u(t, x) \text{ decreases to } \beta(t \to \infty),$ 

ii) when  $x + \varepsilon t \in \Gamma_2 = \{a ; \alpha < f(a) < \beta\}, u(t, x) \text{ increases to } \beta(t \to \infty),$ and

iii) when  $x + \varepsilon t \in \Gamma' = \{a; 0 \le f(a) \le \alpha\}, u(t, x) \text{ decreases to } 0(t \to \infty).$ 

**Proof.** It is shown that u(t, x) defined by (3) is the unique solution of the following semi-linear parabolic equation

(4) 
$$\begin{cases} \frac{\partial u}{\partial t} = \varepsilon \frac{\partial u}{\partial x} + \frac{kb}{\alpha\beta} \left( -\frac{1}{b} u^3 + \frac{\alpha+\beta}{b} u^2 - \frac{\alpha\beta}{b} u \right) \\ u(0, x) = f(x), \end{cases}$$

(cf. [2], [3]). Since the characteristic line of (4) is  $x + \varepsilon t = a$ , setting  $v(t, a) = u(t, a - \varepsilon t)$ , we have

(5) 
$$\begin{cases} \frac{dv}{dt} = -\frac{k}{\alpha\beta}v(v-\alpha)(v-\beta)\\ v(0, a) = f(a). \end{cases}$$

The solution of (5) is given by

$$(6) \qquad \frac{|v||v-\beta|^{\frac{\alpha}{\beta-\alpha}}}{|v-\alpha|^{\frac{\alpha}{\beta-\alpha}}} = A(a)e^{-kt}, \quad A(a) = \frac{f(a)|f(a)-\beta|^{\frac{\alpha}{\beta-\alpha}}}{|f(a)-\alpha|^{\frac{\beta}{\beta-\alpha}}}.$$

It is easy to see that i) dv/dt < 0 when  $\beta < v$ , ii) dv/dt > 0 when  $\alpha < v < \beta$ , and iii) dv/dt < 0 when  $0 < v < \alpha$ . Thus 0 and  $\beta$  are stable critical points and  $\alpha$  is an unstable critical point.<sup>6</sup> Since  $u(t, x) = v(t, x + \varepsilon t), u(t, x)$  behaves like v(t, a) on the characteristic line  $x + \varepsilon t = a$ . Therefore, i) when  $x + \varepsilon t \in \Gamma_1, u(t, x) \uparrow \beta$   $(t \to \infty)$ , ii) when  $x + \varepsilon t \in \Gamma_2, u(t, x) \downarrow \beta$   $(t \to \infty)$ , and iii)  $u(t, x) \downarrow 0$   $(t \to \infty)$  when  $x + \varepsilon t \in \Gamma'$ .

No. 6]

<sup>5)</sup>  $\chi_{\Gamma}$  is the indicator of the set  $\Gamma$ .

<sup>6)</sup> Cf., for example, Petrovski [4].

## M. NAGASAWA

## References

- [1] Kolmogoroff, I., Petrovsky, I., and Piscounoff, N.: Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Bull. de l'Univ. d'Etat à Moscou Série, internationale, Sec. A, 1, 1-25 (1937).
- [2] Nagasawa, M.: Construction of branching Markov processes with age and sign (to appear in Kodai Math. Sem. Rep.).
- [3] Nagumo, J., Arimoto, S., and Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE, 50, 2061-2070 (1962).
- [4] Petrovski, I. G.: Ordinary differential equations. Prentice-Hall (1966).
- [5] Sirao, T.: On signed branching Markov processes with age (to appear in Nagoya J. of Math.).
- [6] Yamaguchi, M.: The asymptotic behaviour of the solution of active pulse transmission line. Proc. Japan Acad., 39, 729-730 (1963).