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97. On Screenable Topological Spaces
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(Comm. by Kinjird KUNUGI, M. J. A., June 12, 1968)

In recent years a number of papers, notably [2], [7], and [13],
have been at least partially concerned with screenability in topologi-
cal spaces and the interrelations between various generalized com-
pactness properties and screenability. In this note it is shown that
both screenability and strong screenability are intermediate to, and
different from, certain generalized Lindel6f properties introduced in
[6]. Also it is proved that in screenable spaces, countable metacom-
pactness, countable paracompactness and countable compactness are
equivalent to metacompactness, paracompactness and compactness,
respectively. The latter result generalizes theorems of Heath [7] and
the author [6].

Throughout this paper, no separation axiom (e.g., the T,-axiom)
is assumed tacitly for the topological spaces under discussion. All
terminology is consistent with that used in [4] and [6]. The proper-
ties of screenability and strong screenability were first defined by
Bing [2].

Definition 1. A collection C of subsets of a topological space X
is

(i) o-pairwise-disjoint if and only if C is the union of count-
ably many collections each of which is a pairwise-disjoint collection
of subsets of X.

(ii) discrete if and only if {C: Ce C} is pairwise-disjoint and
the union of any subcollection of {C: C e (C} is closed in X.

(iii) o-discrete if and only if C is the union of countably many
discrete collections of subsets of X.

Definition 2. A topological space X is

(i) screenable if and only if each open cover of X has a g-pair-
wise-disjoint, open refinement.

(ii) strongly screenable if and only if each open cover of X has
a g-discrete, open refinement.

Lemma. If R is a star-countable open cover of a topological
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space X, then R is g-discrete.

Proof. Suppose {R,: « € 4} is the collection of components of R
and, for each a € 4, let X,= UR,. As observed in a proof of [6, Th.
1], each component of R is countable and {X,: a € 4} is a pairwise-
disjoint collection of open and closed sets whose union is X. For each
aed, let R,={R:, Rg, ---}, where Ri=¢ for j>n, if R, is a finite
collection of 7 elements instead of a countably infinite collection.
For each positive integer ¢, let U,={R3: ac 4}. Then R=U{U;:
1=1,2,...}. Also, if 7 is a positive integer, then R;c X, for each
aec A. Since {X,: a € 4} is a pairwise-disjoint collection of open sets,
it follows that €U, is a discrete collection. Thus R is o-discrete.

Theorem 1. Let X be a topological space. Then

(i) X is strongly screenable, if X is hypoLindeldf.

(i) X is screenable, if X is strongly screenable.

(iii) X s metaLindelof, if X is screenable.

Proof. For (i) note that each open cover of a hypoLindelof
space has a star-countable open refinement which must be g-discrete
by the lemma. (ii) is immediate from the definitions involved as is
(iii), since a ¢-pairwise-disjoint collection of sets must be point-count-
able.

Examples 1 through 8 below show that the properties related by
Theorem 1 are distinet in regular T,-spaces. It is known that a
regular space is hypoLindelof if and only if it is hypocompact [14]
and strongly screenable if and only if it is paracompact [11]. An
affirmative answer to Problem 1, posed previously by Nagami [13],
would also be an affirmative answer to a problem posed by Dowker
[8] and Katétov [10], independently, as to whether there exists a
normal T,-space which is not countably paracompact.

Example 1. A strongly screenable, normal T';-space which is not
hypoLindelof (but is countably hypocompact).

Construction. Since Bing [2] has shown that every metrizable
space is strongly screenable, it suffices to recall that Example H of [6]
is metrizable, and thus countably hypocompact, but not hypoLindeldf.

Example 2. A screenable, regular T,-space which is not strongly
screenable.

Construction. Bing’s Example B in [2] has the requisite prop-
erties, as does the more recent, simpler Example 2 of Heath [7].

Problem 1. Does there exist a sereenable normal T',-space which
is not strongly screenable?

Example 3. A metaLindelof, normal T,-space which is not
screenable (but is metacompact and countably hypocompact).
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Construction. In light of Theorem 2 below, Example I, of [6],
due to Michael [12] as a modification of an example of Bing [2], has
the requisite properties.

Theorem 2. Suppose X is a screenable topological space. Then

(i) X is metacompact if X is countably metacompact.

(ii) X s paracompact if X is countably paracompact.

(iii) X is compact if X is countably compact.

Proof. Let U be an open cover of X. Since X is screenable,
there exists a sequence U,, U,, - -- each term of which is a pairwise-
disjoint collection of open sets, such that U:,<U, is an open refine-
ment of U. For each positive integer n, let H,= y(U2,U,) and let

F,=X—H,. ThenF,,F,, ... isa decreasing sequence of closed sets
such that N, F,=¢.
The existence of the sequences G,, G,, --- described next is

assured by theorems of F'. Ishikawa [9] which characterize count-
able metacompactness and countable paracompactness in the manner
indicated. If X is countably metacompact, let G,, G,, --- be a de-
creasing sequence of open sets in X such that Ny, G,=¢ and F,CG,
for each positive integer =,

Let R=U,U{R: R=G,_,NU, Ue U, t>2}. Then R is a collection
of open sets each one of which is contained in some element of .
Suppose ¢ X. There exists a least positive integer M such that
xeHy,. If M=1, then xe H;=U,. If M>1, then xc¢H,,—H,_,
and so zeFy ,CGy_, and ze UQU,; thus ze Gy,_,NU for some
UecUy. In either case, xe UR and so R is an open cover of X.

Now suppose pe X. If X is countably metacompact, let N be a
positive integer such that p ¢ G, whenever j>N. Thus pe U{R: R
=G,.,NU, Ue,, >N} and p belongs to at most one element of each
of Uy, --+,Uy. Thus p belongs to at most N elements of R and
hence R is point-finite. This proves that X is metacompact. If X is
countably paracompact, let N be a positive integer such that pe G,
whenever j>N and let V,=X—G,. Then V,NG,=¢ if >N and so
ViN{R: R=G,.,NU,UeU,, i>N}=¢. LetV be the intersection of
V, with the (at most N) elements of U, U ... U9, to which p belongs.
Then V is an open set about p which intersects at most N elements of
R and so R is locally-finite. This proves that X is paracompact.

Finally, if X is countably compact then X is countably metacom-
pact and so is metacompact by the above proof. It follows from a
theorem of Arens and Dugundgi [1], which as noted in [6, pp. 39-49]
does not require a T,-hypothesis, that X is compact.

Corollary 1. Suppose X is a screenable topological space in
which every closed set is o G,. Then X is metacompact.
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Proof. In [5] it was shown that a space in which every closed
set is a G, must be countably metacompact.

Problem 2. Does there exist a screenable, regular T,-space
which is not metacompact?

Corollary 2. Suppose X is a screenable,normal topological space
in which every closed set is a G,. Then X is paracompact and count-
ably hypocompact.

Proof. As in Corollary 1, X must be countably metacompact.
Dowker [3] and Katétov [10], independently, have shown that normal,
countably metacompact spaces are countably paracompact and Iséki
[8] showed that normal, countably paracompact spaces are countably
hypocompact. Finally, X is paracompact by Theorem 2.

Corollary 1 was proved first by Heath [7] whose method of proof
suggested Theorem 2. In [6] a proof was given of Theorem 2 with
‘“‘screenable” replaced by ‘‘hypoLindelof” and it was also shown
that every hypoLindeléf, countably hypocompact space is hypocom-
pact. Example 1 above shows that not every screenable (or strongly
screenable), countably hypocompact space is hypocompact. Theorem
2 is also not valid if ‘‘screenable” is replaced with ‘“metaLindelsf,”
as is demonstrated by Example 3 above.
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