96. Calculus in Ranked Vector Spaces. VI

By Masae YAMAGUCHI

Department of Mathematics, University of Hokkaido

(Comm. by Kinjirô KUNUGI, M. J. A., June 12, 1968)

3.4. Differentiable mappings into a direct product.

(3.4.1) Proposition. Let F_1, F_2, \dots, F_m ; E_1, E_2, \dots, E_m be a family of separated ranked vector spaces and $f_1: F_1 \rightarrow E_1, f_2: F_2 \rightarrow E_2, \dots, f_m: F_m \rightarrow E_m$ a family of mappings. Let $\times f_i: \times F_i \rightarrow \times E_i$ be a mapping from $\times F_i$ into $\times E_i$ defined by,

 $(\times f_i)(x) = (f_1(x_1), f_2(x_2), \cdots, f_m(x_m))$

for any element $x = (x_1, x_2, \dots, x_m) \in \times F_i$. Then $\times f_i : \times F_i \to \times E_i$ is differentiable at the point $a = (a_1, a_2, \dots, a_m) \in \times F_i$ if and only if for each i $(i=1, 2, \dots, m)$ $f_i : F_i \to E_i$ is differentiable at the point $a_i \in F_i$, and then

 $(\times f_i)'(a) = \times f_i'(a_i).$

Proof. (a) Suppose that $\times f_i : \times F_i \to \times E_i$ is differentiable at the point $a = (a_1, a_2, \dots, a_m) \in \times F_i$, i.e., there exists a map $\times l_i \in L(\times F_i; \times E_i)$ such that the map $\times r_i : \times F_i \to \times E_i$ defined by

 $(\times f_i)(a+h) = (\times f_i)(a) + (\times l_i)(h) + (\times r_i)(h)$

is a remainder, where $h = (h_1, h_2, \dots, h_m) \in \times F_i$.

 $\therefore f_i(a_i+h_i)=f_i(a_i)+l_i(h_i)+r_i(h_i), \quad i=1, 2, \dots, m.$ We shall show that it follows from $\times l_i \in L(\times F_i; \times E_i)$ that for each $i \ (i=1, 2, \dots, m)$

$$l_i \in L(F_i; E_i).$$

In fact, by $\times l_i \in L(\times F_i; \times E_i)$, $(\times l_i)(h+h') = (\times l_i)(h) + (\times l_i)(h')$

where $h = (h_1, h_2, \dots, h_m)$, $h' = (h'_1, h'_2, \dots, h'_m)$ are arbitrary elements of $\times F_i$. From this we have

$$\begin{aligned} &(l_1(h_1+h_1'), l_2(h_2+h_2'), \cdots, l_m(h_m+h_m')) \\ &= (l_1(h_1), l_2(h_2), \cdots, l_m(h_m)) + (l_1(h_1'), l_2(h_2'), \cdots, l_m(h_m')) \\ &= (l_1(h_1) + l_1(h_1'), l_2(h_2) + l_2(h_2'), \cdots, l_m(h_m) + l_m(h_m')). \\ &\therefore \quad l_i(h_i+h_i') = l_i(h_i) + l_i(h_i'), \qquad i = 1, 2, \cdots, m. \end{aligned}$$

That is, l_1, l_2, \dots, l_m are linear.

By $\times l_i \in L(\times F_i; \times E_i)$, $\times l_i$ is continuous, and therefore it is obvious that l_i is continuous.

 $\therefore \quad l_i \in L(F_i; E_i), \qquad i=1, 2, \cdots, m.$

We shall next show that $\times r_i \in R(\times F_i; \times E_i)$ implies $r_i \in R(F_i; E_i)$, $i=1, 2, \dots, m$.

Let $\{z_n\} = \{(x_{n1}, x_{n2}, \dots, x_{nm})\}$ be a quasi-bounded sequence in $\times F_i$ and $\{\lambda_n\}$ a sequence in \Re such that $\lambda_n \to 0$, then $\times r_i \in R(\times F_i; \times E_i)$ implies

$$\left\{\lim \frac{(\times r_i)(\lambda_n z_n)}{\lambda_n}\right\} \ni 0$$

$$\therefore \quad \left\{\lim \left(\frac{r_1(\lambda_n x_{n1})}{\lambda_n}, \frac{r_2(\lambda_n x_{n2})}{\lambda_n}, \cdots, \frac{r_m(\lambda_n x_{nm})}{\lambda_n}\right)\right\} \ni 0$$

$$\therefore \quad \left\{\lim \frac{r_1(\lambda_n x_{n1})}{\lambda_n}\right\} \ni 0, \left\{\lim \frac{r_2(\lambda_n x_{n2})}{\lambda_n}\right\} \ni 0, \cdots, \left\{\lim \frac{r_m(\lambda_n x_{nm})}{\lambda_n}\right\} \ni 0.$$

$$: \quad r_1 \in R(F_1; E_1), \ r_2 \in R(F_2; E_2), \ \cdots, \ r_m \in R(F_m; E_m).$$

Therefore $f_i: F_i \rightarrow E_i$ is differentiable at the point $a_i \in F_i$, for $i=1, 2, \dots, m$.

(b) Suppose conversely that for each i $(i=1, 2, \dots, m)$ $f_i: F_i \rightarrow E_i$ is differentiable at the point $a_i \in F_i$, i.e.,

$$f_1(a_1+h_1) = f_1(a_1) + l_1(h_1) + r_1(h_1)$$

$$f_2(a_2+h_2) = f_2(a_2) + l_2(h_2) + r_2(h_2)$$

$$f_m(a_m+h_m) = f_m(a_m) + l_m(h_m) + r_m(h_m)$$

where $l_1 \in L(F_1; E_1), l_2 \in L(F_2; E_2), \dots, l_m \in L(F_m; E_m); r_1 \in R(F_1; E_1), r_2 \in R(F_2; E_2), \dots$, and $r_m \in R(F_m; E_m)$. Thus we have $((f_1)(a+b) - ((f_1)(a)) + ((f_1)(b)) + ((f_1)(b)))$

$$(\times f_i)(a+h) = (\times f_i)(a) + (\times l_i)(h) + (\times r_i)(h)$$

where $a = (a_1, a_2, \dots, a_m)$ and $h = (h_1, h_2, \dots, h_m) \in \times F_i$.

It only remains to prove that

 $\times l_i \in L(\times F_i; \times E_i)$ and $\times r_i \in R(\times F_i; \times E_i)$.

It is clear that we have

$$imes l_i \in L(imes F_i \ ; \ imes E_i).$$

In fact, let $h = (h_1, h_2, \dots, h_m)$, $h' = (h'_1, h'_2, \dots, h'_m)$ be arbitrary elements in $\times F_i$, then

$$\begin{aligned} (\times l_i)(h+h') &= (l_1(h_1+h_1'), \, l_2(h_2+h_2'), \, \cdots, \, l_m(h_m+h_m')) \\ &= (l_1(h_1)+l_1(h_1'), \, l_2(h_2)+l_2(h_2'), \, \cdots, \, l_m(h_m)+l_m(h_m')) \\ &= (l_1(h_1), \, l_2(h_2), \, \cdots, \, l_m(h_m))+(l_1(h_1'), \, l_2(h_2'), \, \cdots, \, l_m(h_m')) \\ &= (\times l_i)(h)+(\times l_i)(h') \end{aligned}$$

i.e., $\times l_i : \times F_i \rightarrow \times E_i$ is linear.

Since $l_i: F_i \rightarrow E_i$ $(i=1, 2, \dots, m)$ are continuous, $\times l_i: \times F_i \rightarrow \times E_i$ is also continuous,

$$\therefore \quad \times l_i \in L(\times F_i; \times E_i).$$

We shall next show that $\times r_i \in R(\times F_i; \times E_i)$. For this, let $\{z_n\}$ = $\{(x_{n1}, x_{n2}, \dots, x_{nm})\}$ be any quasi-bounded sequence in $\times F_i$ and $\{\lambda_n\}$ a sequence in \Re with $\lambda_n \rightarrow 0$, then

No. 6]

M. YAMAGUCHI

[Vol. 44,

$$\frac{(\times r_i)(\lambda_n z_n)}{\lambda_n} = \left(\frac{r_1(\lambda_n x_{n1})}{\lambda_n}, \frac{r_2(\lambda_n x_{n2})}{\lambda_n}, \cdots, \frac{r_m(\lambda_n x_{nm})}{\lambda_n}\right).$$

Since $r_1 \in R(F_1; E_1), r_2 \in R(F_2; E_2), \cdots, r_m \in R(F_m; E_m),$
$$\left\{\lim \frac{r_1(\lambda_n x_{n1})}{\lambda_n}\right\} \ni 0, \left\{\lim \frac{r_2(\lambda_n x_{n2})}{\lambda_n}\right\} \ni 0, \cdots, \left\{\lim \frac{r_m(\lambda_n x_{nm})}{\lambda_n}\right\} \ni 0.$$
By (1.5.1) we get

By (1.5.1) we get

$$\therefore \quad \left\{ \lim \frac{(\times r_i)(\lambda_n z_n)}{\lambda_n} \right\} \ni 0$$

$$\therefore \quad \times r_i \in R(\times F_i; \times E_i).$$

Thus $\times f_i : \times F_i \to \times E_i$ is differentiable at the point $a = (a_1, a_2, \dots, a_m)$ $\in \times F_i$ and

$$(\times f_i)'(a) = \times f'_i(a_i).$$

(3.4.2) Proposition. Let E, E_1, E_2, \dots, E_m be a family of separated ranked vector spaces and $f_1: E \rightarrow E_1, f_2: E \rightarrow E_2, \dots, f_m: E \rightarrow E_m$ a family of mappings. Let Πf_i be a mapping from E into $\times E_i$ defined by

$$(\Pi f_i)(x) = (f_1(x), f_2(x), \cdots, f_m(x))$$

for any $x \in E$. Then $\Pi f_i: E \to \times E_i$ is differentiable at a point $a \in E$ if and only if for each $i (i=1, 2, \dots, m)$ $f_i: E \to E_i$ is differentiable at the point $a \in E$, and then

$$(\Pi f_i)'(a) = \Pi f_i'(a).$$

Proof. (a) Suppose that $\Pi f_i: E \to \times E_i$ is differentiable at the point $a \in E$. Let us consider for each k $(k=1, 2, \dots, m)$ a mapping $P_k: \times E_i \rightarrow E_k$ defined by

 $P_k z = x_k$

for any element $z = (x_1, x_2, \dots, x_m) \in \times E_i$. Then it is clear that $P_k: \times E_i \rightarrow E_k$ is linear and continuous, and therefore by (3.2.1) it is differentiable at each point in $\times E_i$.

Since

$f_k = P_k \cdot \Pi f_i$

by the chain rule f_k is differentiable at the point $a \in E$.

(b) Suppose conversely that $f_1: E \to E_1, f_2: E \to E_2, \dots, f_m: E \to E_m$ are differentiable at the point $a \in E$. Then by (3.4.1) the mapping

$$\times f_i: \times E = E^m \rightarrow \times E_i$$

is differentiable at the point $(a, a, \dots, a) \in E^m$.

Now let us consider a mapping $d: E \rightarrow E^m$ defined by

$$d(x) = (x, x, \cdots, x) \in E^m$$

for any $x \in E$. It is obvious that $d: E \rightarrow E^m$ is linear and continuous. Hence by (3.2.1) it is differentiable and d'(a) = d.

Since

$$\Pi f_i = \times f_i \cdot d,$$

by the chain rule Πf_i is differentiable at the point $a \in E$, and $(\Pi f_i)'(a) = \Pi f'_i(a).$

References

- K. Kunugi: Sur la méthode des espaces rangés. I. Proc. Japan Acad., 42, 318-322 (1966).
- [2] M. Washihara: On ranked spaces and linearity. Proc. Japan Acad., 43, 584-589 (1967).
- [3] A. Frolicher and W. Bucher: Calculus in vector spaces without norm. Lecture Notes in Mathematics, 30, Springer (1966).