93. Fourier Series of Functions of Bounded Variation

By Masako Izumi and Shin-ichi Izumi
Department of Mathematics, The Australian National University, Canberra, Australia

(Comm. by Zyoiti Suetuna, m. J. A., June 12, 1968)

Let f be an integrable function with period 2π and let

$$
\begin{equation*}
f(x) \sim \frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) . \tag{1}
\end{equation*}
$$

The following theorems are well known ([1], pp. 48, 57-58; [2] pp. 71-72, 114-116) :

Theorem 1. If f is of bounded variation, then (2) $\quad\left|a_{n}\right| \leqq V / \pi n, \quad\left|b_{n}\right| \leqq V / \pi n$ for all $n>1$, where V is the total variation of f over $(0,2 \pi)$.

Theorem 2. If f is of bounded variation, then the Fourier series (1) converges to $\frac{1}{2}(f(x+0)+f(x-0))$ for every x.

Recently, M. Taibleson [3] has given an elementary proof of Theorem 1, except the constant V / π in (2), which is the best possible. We shall give elementary proofs of Theorems 1 and 2.

Proof of Theorem 1.
(3) $\pi a_{n}=\int_{0}^{2 \pi} f(x) \cos n x d x=\int_{-\pi / 2 n}^{2 \pi-\pi / 2 n}=\sum_{k=0}^{2 n-1} \int_{(k-1 / 2) \pi / n}^{(k+1 / 2) \pi / n}$

$$
\begin{aligned}
& =\sum_{k=0}^{2 n-1}(-1)^{k} \int_{-\pi / 2 n}^{\pi / 2 n} f(x+k \pi / n) \cos n x d x \\
& =\int_{-\pi / 2 n}^{\pi / 2 n}\left[\sum_{j=0}^{n-1}(f(x+2 j \pi / n)-f(x+(2 j+1) \pi / n))\right] \cos n x d x \\
& =-\int_{-\pi / 2 n}^{\pi / 2 n}\left[\sum_{j=0}^{n-1}(f(x+(2 j+1) \pi / n)-f(x+(2 j+2) \pi / n))\right] \cos n x d x
\end{aligned}
$$

and then

$$
\begin{aligned}
2 \pi\left|a_{n}\right| & \leqq \int_{-\pi / 2 n}^{\pi / 2 n}\left[\sum_{k=0}^{2 n-1}|f(x+k \pi / n)-f(x+(k+1) \pi / n)|\right] \cos n x d x \\
& \leqq V \int_{-\pi / 2 n}^{\pi / 2 n} \cos n x d x=2 V / n .
\end{aligned}
$$

Thus we get $\left|a_{n}\right| \leqq V / \pi n$. Similarly for b_{n}.
Proof of Theorem 2. We can suppose $f(x)=\frac{1}{2}[f(x+0)+f(x-0)]$ for all x. We put $f_{x}(t)=f(x+t)+f(x-t)-2 f(x)$, then $f_{x}(t)$ is continuous at $t=0$. We denote by M the upper bound of $\left|f_{x}(t)\right|$ and by $V(a, b)$ the total variation of f_{x} on the interval (a, b), then we can easily see that

$$
\lim _{s \rightarrow 0} V(0, \varepsilon)=0
$$

Further we denote by $s_{n}(x)$ the nth partial sum of the Fourier series (1), then, ${ }^{1)}$ by Theorem 1,

$$
\begin{aligned}
& s_{n}(x)-f(x)=\frac{1}{\pi} \int_{0}^{\pi} \frac{\sin n t}{t} f_{x}(t) d t+o(1)=\frac{1}{\pi} \sum_{k=0}^{n-1} \int_{k \pi / n}^{(k+1) \pi / n}+o(1) \\
& \quad=\frac{1}{\pi} \int_{0}^{\pi / n}\left[\sum_{j=0}^{(n-1) / 2}\left(\frac{f_{x}(t+2 j \pi / n)}{t+2 j \pi / n}-\frac{f_{x}(t+(2 j+1) \pi / n)}{t+(2 j+1) \pi / n}\right)\right] \sin n t d t+o(1) \\
& \quad=\frac{1}{\pi} \int_{0}^{\pi / n}\left[\sum_{j=0}^{\infty n}+\sum_{j=<n+1}^{(n-1) / 2}\right] \sin n t d t+o(1)=(I+J)+o(1),
\end{aligned}
$$

where

$$
\begin{align*}
|I| \leqq & \frac{1}{\pi} \int_{0}^{\pi / n}\left[\sum_{j=0}^{\iota n} \frac{\left|f_{x}(t+2 j \pi / n)-f_{x}(t+(2 j+1) \pi / n)\right|}{t+2 j \pi / n}\right] \sin n t d t \tag{5}\\
& +\frac{1}{n} \int_{0}^{\pi / n}\left[\sum_{j=0}^{\iota n} \frac{\left|f_{x}(t+(2 j+1) \pi / n)\right|}{(t+2 j \pi / n)(t+(2 j+1) \pi / n)}\right] \sin n t d t \\
\leqq & 2 V(0,3 \varepsilon \pi)+2 \sup _{0 \leq t \leq 3 \varepsilon \pi}\left|f_{x}(t)\right|
\end{align*}
$$

for $n>1 / \varepsilon$, and similarly

$$
|J| \leqq \frac{V(2 \varepsilon \pi, \pi)}{2 \varepsilon \pi n}+\frac{M}{2 \varepsilon \pi n}
$$

Therefore

$$
\limsup _{n \rightarrow \infty}\left|s_{n}(x)-f(x)\right| \leqq \limsup _{n \rightarrow \infty}|I| \text {, }
$$

where the right side tends to zero as $\varepsilon \rightarrow 0$, by (4) and (5).
Remarks. If we denote by $\omega(h)$ the modulus of continuity of f, then the formula (3) gives

$$
\begin{equation*}
\left|a_{n}\right| \leqq \frac{2}{\pi} \omega\left(\frac{\pi}{n}\right), \quad\left|b_{n}\right| \leqq \frac{2}{\pi} \omega\left(\frac{\pi}{n}\right) \tag{6}
\end{equation*}
$$

(cf. [1], p. 45). In particular, if $f \in \operatorname{Lip} \alpha(0<\alpha \leqq 1)$, that is

$$
|f(t+h)-f(t)| \leqq M h^{\alpha} \quad \text { for all } t \text { and } h>0
$$

then (6) becomes

$$
\left|a_{n}\right| \leqq 2 M / \pi^{1-\alpha} n^{\alpha}, \quad\left|b_{n}\right| \leqq 2 M / \pi^{1-\alpha} n^{\alpha}
$$

If we write $\Delta_{h}{ }^{2} f(x)=f(x+h)-2 f(x)+f(x-h)$, then (3) becomes

$$
\begin{equation*}
2 \pi a_{n}=\int_{-\pi / 2 n}^{\pi / 2 n}\left(\sum_{j=0}^{n-1} \Delta_{\pi / n}^{2} f(x+2 j \pi / n)\right) \cos n x d x \tag{7}
\end{equation*}
$$

We have defined the second modulus of continuity $\omega_{2}(h)$ by

$$
\sup _{0 \leq x \leq 2 \pi}|f(x+h)-2 f(x)+f(x-h)|
$$

then (7) gives

$$
\left|a_{n}\right| \leqq \frac{1}{\pi} \omega_{2}\left(\frac{\pi}{n}\right), \quad\left|b_{n}\right| \leqq \frac{1}{\pi} \omega_{2}\left(\frac{\pi}{n}\right)
$$

[^0]
References

[1] A. Zygmund: Trigonometric Series. I. Cambridge Univ. Press (1959).
[2] N. Bari: A Treatise on Trigonometric Series. I. Pergamon Press (1964).
[3] M. Taibleson: Fourier coefficients of functions of bounded variation. Proc. Amer. Math. Soc., 18, 766 (1967).

[^0]: 1) $\sum_{n=A}^{B}$ denotes the summation for $a \leqq n \leqq b$, where a and b are not necessarily integers.
