184. Non-existence of Holomorphic Solutions of $\partial u / \partial z_{1}=f$

By Isao Wakabayashi
Department of Mathematics, Tokyo Metropolitan University
(Comm. by Kunihiko Kodaira, m. J. A., Oct. 12, 1968)

1. Consider the partial differential equation

$$
\begin{equation*}
\frac{\partial u}{\partial z_{1}}=f \tag{1}
\end{equation*}
$$

on a domain D in the complex affine space $C^{n}\left(z_{1}, z_{2}, \cdots, z_{n}\right)$, where the given function $f=f\left(z_{1}, z_{2}, \cdots, z_{n}\right)$ is holomorphic in D. We are interested in global holomorphic solutions u of (1).

In particular, for $n=1$, it is well known that (1) has a global holomorphic solution for every f if and only if D is simply connected. We ask whether this is true for $n \geqslant 2$.

In what follows, we shall answer negatively this question. Namely, we shall give a domain D in C^{3} which is holomorphically equivalent to a polycylinder (i.e., a product domain of disks) and on which (1) has no global solution for some holomorphic functions f.

For $n \geqslant 2$, a counterpart of simply connected domains is sometimes regarded as Runge domains.*) We shall give, however, a Runge domain $D \subset C^{2}$ on which (1) has no global solution for some holomorphic functions f.

On a convex domain in \boldsymbol{C}^{n}, the existence theorem for global solutions of linear partial differential equations with constant coefficients was established by Harvey [2], and it was extended by Komatsu [3] to systems of those satisfying a compatibility condition. However convexity is a stronger condition than simply-connectedness. Moreover, as the case $n=1$ indicates, whether the simply-connectedness is sufficient or not for the existence of global solutions of such differential equations has been unknown for $n>1$.
2. Now we prove a proposition in order to show following Theorem 1.

Proposition. Let D be a domain of holomorphy in $C^{n}\left(z_{1}, z_{2}, \cdots\right.$, $\left.z_{n}\right)$. If there exists a complex line L of the form $L=\left\{\left(z_{1}, z_{2}, \cdots, z_{n}\right)\right.$ $\left.\in \boldsymbol{C}^{n} \mid z_{2}=z_{2}^{0}, \cdots, z_{n}=z_{n}^{0}\right\}$ such that the intersection of L and D contains a multiply connected domain (in L), then (1) has no global solution on D for some holomorphic functions f.
*) A domain of holomorphy in C^{n} is called a Runge domain if every holomorphic function in the domain can be uniformly approximated on an arbitrary compact set in the domain by polynomials.

Proof. Because $L \cap D$ contains a multiply connected domain, there exists a bounded set in the complement of $L \cap D$ with respect to L. Take an arbitrary point $\left(z_{1}^{0}, z_{2}^{0}, \cdots, z_{n}^{0}\right)$ belonging to such a set. Let f^{\prime} be a function on $L \cap D$ defined by $f^{\prime}\left(z_{1}, z_{2}^{0}, \cdots, z_{n}^{0}\right)=1 /\left(z_{1}-z_{1}^{0}\right)$. Then f^{\prime} is a holomorphic function on the analytic set $L \cap D$ in D. Hence, by Theorem B for domains of holomorphy, there exists a holomorphic function f on D whose restriction to $L \cap D$ is equal to f^{\prime}. If there exists a global solution $u\left(z_{1}, \cdots, z_{n}\right)$ of (1) on D for f, we have

$$
\frac{\partial u\left(z_{1}, z_{2}^{0}, \cdots, z_{n}^{0}\right)}{\partial z_{1}}=f\left(z_{1}, z_{2}^{0}, \cdots, z_{n}^{0}\right)=\frac{1}{z_{1}-z_{1}^{0}}
$$

Hence u must be multivalent. Consequently (1) has no global solution for the above function f.
q.e.d.

Let F be a map of $C^{3}(x, y, z)$ into itself defined by $F(x, y, z)$ $=\left(x, x y^{2}+z, x y-y+2 y z\right)$, and let D_{b} denote a polycylinder

$$
\{(x, y, z)||x|<1+b,|y|<1+b,|z|<b, b>0\} .
$$

Wermer showed [5]([1] p. 38) that for sufficiently small b, D_{b} and its image $F\left(D_{b}\right)$ are holomorphically equivalent by the map F, and $F\left(D_{b}\right) \cap\{(x, y, z) \mid y=1, z=0\}$ contains a circle $\{(x, y, z)||x|=1, y=1$, $z=0\}$ without containing the point $(0,1,0)$. Hence, from the above proposition, we have

Theorem 1. There exists a simply connected domain $D \subset C^{3}$ on which (1) has no global solution for some holomorphic functions f.
3. We now consider Runge domains, and our result is the following:

Theorem 2. There exists a Runge domain $D \subset C^{2}$ on which (1) has no global solution for some holomorphic functions f.

Every componet of the intersection of an arbitrary complex line $L=\left\{(x, y) \in C^{2}(x, y) \mid a x+b y+c=0\right\}$ and a Runge domain in C^{2} is simply connected, where a, b, c are constant complex numbers. Hence the situation of this section differs from that of the preceding section.

Proof of Theorem 2. (i) Construction of the domain. In order to construct a domain with which we are concerned, let us consider the following function on $C^{1}(x)$ defined by $g(x)=x+c / x, c$ being a constant complex number. By means of the function g, we shall form a closed bounded set \sum in $C^{2}(x, y)$ in the following way :

$$
\Sigma=\left\{(x, y) \in C^{2}\left|y=g(x),|g(x)| \leqslant 1, x \in C^{1}(x)\right\}\right.
$$

By a fundamental theorem of Oka ([4] Théorème 1), for any neighborhood of Σ, there exists a Runge region (which may not be connected) included in the neighborhood and containing Σ. We may choose sufficiently small c so that the projection of Σ to x-plane is a closed doubly connected domain not containing the origin, Σ itself is
connected, and the projection of Σ to y-plane is a disk $\left\{y \in C^{1}(y) \mid\right.$ $|y| \leqslant 1\}$. According to the above theorem of Oka, there exists a Runge domain D which does not contain $\left\{(x, y) \in C^{2} \mid x=0\right\}$. This Runge domain is what we wanted.
(ii) A function f for which (1) hàs no solution. Let f be a holomorphic function in the domain D defined by $f(x, y)=1 / x$. Now, to show (1) has no global solution on D for f, assume the contrary, and denote a solution of (1) by $u(x, y)$. Let us consider a multivalent holomorphic function $u(x, y)-\log x$ on D. Then $u(x, y)-\log x$ is independent of the variable x, for

$$
\frac{\partial\{u(x, y)-\log x\}}{\partial x}=0
$$

Hence we may denote the multivalent function by $h(y)$. The restriction of $h(y)$ to Σ is regarded as a multivalent holomorphic function on the closed disk $\left\{y \in C^{1}(y)| | y \mid \leqslant 1\right\}$. This is a contradiction. Therefore, on the domain D which is a Runge domain, and for the above function f, there exists no global solution of (1).

References

[1] R. C. Gunning and H. Rossi: Analytic Functions of Several Complex Variables. Prentice-Hall, Inc. (1965).
[2] R. Harvey: Hyperfunctions and linear partial differential equations. Proc. Natl. Acad. Sci. U.S.A., 55, 1042-1046 (1966).
[3] H. Komatsu: Resolutions by hyperfunctions of sheaves of solutions of differential equations with constant coefficients. Math. Ann., 176, 77-86 (1968).
[4] K. Oka: Sur les fonctions analytiques de plusieurs variables. II. Domaines d'holomorphie. J. Sci. Hiroshima Univ., 7, 115-130 (1937).
[5] J. Wermer: Addendum to "An example concerning polynomial convexity". Math. Ann., 140, 322-323 (1960).

