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1o Introduction. A topological space X with a continuous mul-
tiplication with unit is called an H-space. If this multiplication is
associative, X is called an associative H-space. Suppose that X is an
associative H-space and that the integral cohomology of X is finitely
generated. Then it follows from the classical Hopf’s theorem that
the rational cohomology of X is an exterior algebra on a finite number
of odd dimensional generators. The number of such generators is
called the rank of X. The dimensions in which the generators occur
is called the type of X. L. Smith determined all the possible types of
associative H-spaces of rank 2 [6].

In this paper, we apply L. Smith’s method to an associative
H-space of rank 3 and determine the types of such a space.

Theorem. Let X be an arcwise connected H-space of rank 3 with
H.(X Z) finitely generated as an abelian group. Then the type of X
is either (1, 1, 1), (1, 1, 3), (1, 3, 3), (1, 3, 5), (1, 3, 7), (1, 3, 11), (3, 3, 3),
(3, 3, 5), (3, 3, 7), (3, 3, 11), (3, 5, 7), (3, 7, 11), (3, 5, 5), (3, 5, 11), (3, 7, 7),
or (3, 11, 11).

Examples of H-spaces having the types from (1, 1, 1) to (3, 7, 11)
are given by S S S, S S x S, S S S, S x SU(3), S SP(2),
S G, S S S, S SU(3), S x SP(2), S G, SU(4), and SP(3)
respectively.

The author does not know whether the remaining types are real-
ized or not.) I wish to express my hearty thanks to L. Smith for sug-
gesting this problem and giving me many helpful advices, and to
Professors K. Morita and R. Nakagawa for their criticism and en-
couragement.

2. Some results on unstable polyalgebras. A polynomial alge-
bra R over the mod p Steenrod algebra Av(p: prime) is called an
unstable polyalgebra over Av, if it is an algebra that is left Av-module
satisfying

1) After the manuscript had been submitted, L. Smith suggested to me that
it was possible to show that an H-space of type (3, 5, 5), (3, 5, 11), (3, 7, 7) or
(3, 11, 11) did not exist. In fact, the non-existence of H-spaces with the type.s
(3, 5, 11) and (3, 11, 11) is proved by using the Steenrod operation p2.
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( 1 ) P$x-O if 2ndeg x
( 2 ) P$x-x if 2n= deg x,
where we denote Sq by P if p=2. This terminology is due to L.
Smith [6].

Next Theorem is the result of A. Clark [1].

Theorem 2.1. Let R be an unstable polyalgebra over A
(p" prime). If 2m, mO rood p is the degree of a generator of R,
then R has a generator in some degree 2n for which n=_ 1-p mod m.

Corollary 2.2. Let R be an unstable polyalgebra over A (p" odd
prime) on three generators x, y, z with deg x= 4, deg y-2m, deg z-2n,
and pn, ml, then the integer m satisfies one of the following con-
ditions (A), while n satisfies one of the following conditions (B).

(A) 2--1-p rood m, (B) 2--1--p modn.
m--1--p mod m, n=_l--p modn.
n--1--p rood m, m-l--p mod n.

Proof. Since m0 mod p, it follows from Theorem 2.1 that one
of the conditions (A) is satisfied. The remaining part of this corollary
is proved similarly.

:}. Euler function and its consequence. The next classical
theorem is needed in this section.

Theorem (Dirichlet). Every arithmetic series whose initial
term and difference are relatively prime contains an infinite number
of primes.

Let be the Euler function. The elementary property of this

function is as follows.
1) If p is a prime, then F(pO-p-p-, e>__O, where we under-

stand p-- O.
2) If a and b are relatively prime, then (ab)-(a)(b).
Lemma :.1. If n# 1, 2, 3, 4, 6, then 9(n)>=4.
Proof. If n4:23, (r>0,_ s>0),= then n is the form of t.p, p>5,_

el, (t, pe)-l.
Therefore

p(n) p(t)p(pe) p(t)(p- i)e-l)
p(t)(p- l)p-__> p(t)(p- I)

>__ 4(t) >= 4.
If n is the form n=2"3 (r>__0, s>=0), then

9(n)- (2-- 2-)(3-- 3-).
By the assumption of this Lemma 3.1,

1) If r=0, then s_>_2.
2) If r-l, then s>__2.
3) If r=2, then s_>_l.
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4) If r=3, then s_>_0.
Therefore, we get (n)>__ 4 in all these cases.

Lemma 3.2. Let n be a positive integer. If (n)>=4, then there
is an integer e satisfying the following conditions

e 1 rood n
el rood n
el-m mod n
(e, n)-I

where m is a given integer.
Proof. Since ?(n)__>4, there are relatively different (rood n) inte-

gers e, e, e, e4, such that (n, e)-1, (n, e)= 1, (n, e)--1, (n, e)-1.
Therefore, if e--1 mod n, e_=l rood n, e--1--m rood n, then the
remaining e is the required integer e. The other case is nothing to
prove.

Proposition 3.3. Let n and m be positive integers. If, for all
sufficiently large prime p, one of the following conditions is satisfied,
then n-1, 2, 3, 4, or 6.

p _= 1 rood n
p_=l mod n
p=_l--m mod n

Proof. It n: 1, 2, 3, 4, 6, then, it ollows from Lemma 3.1 that
we get (f(n)>__4. Therefore, from Lemma 3.2, there is an integer e
such that e- 1 mod n, el mod n, e1--m mod n, (e, n)-1. From
Dirichlet’s theorem, arithmetic series {ala- e + n]} contains infinitely
many primes. Suppose that p is such a prime, then p---e mod n.

Therefore
p 1 mod n
p 1 mod n
pl-m mod n

This concludes the proof.
It is easily checked by the same way as in [6] that these values

1, 2, 3, 4, 6 actually satisfy the above conditions or all sufficiently
large prime p.

Proposition 3.4. Let n and m be positive integers. If, for all
sufficiently large prime p, one of the following conditions is satisfied,
then m-1, 2, 3, 4, or 6.

p------1 mod m
p- 1 rood m
p- 1-n mod m

Proof. Since Lemma 3.1 and Lemma 3.2 are valid for m, the
proof of this proposition is the same as Proposition 3.3. These values
actually satisfy the above conditions for all sufficiently large prime
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p also.
4. Proof of Theorem. In this section we will prove the main

Theorem by the method of L. Smith [6]. Next Theorems are needed
in this section.

Theorem 4.1 (L. Smith) [6]. Le X be a connected associative
H-space with H,(X Z) finitely generated as an abelian group. If the
rank of X is 2, then the type of X is either (1, 1), (1, 3), (3, 3), (3, 5),
(3, 7), or (3, 11).

Theorem 4.2 (A. Clark) [1]. Let X be a simply connected as-
sociative H-space with H.(X; Z) finitely generated as an abelian
group. Then H.(X Z) has a generator of degree 3.

Theorem 4.. Let X be an arcwise connected H-space and it’s
rood p cohomology H*(X Z) is an exterior algebra on odd dimensional
generators of rank 3 except the type (1, 1, .). Then mod p cohomology
H*(. Z) of universal covering space . of X is

H*(X; Z)H*(X; Z)=
{H(X Z)}

where {H(X Z)} denotes the ideal generated by H(X Z). This is
a corollary o W. Browder’s Theorem [2].

Now, we are in a position to prove the main Theorem which is
stated in the introduction.

Assume that X is an arcwise connected simply connected H-space
of rank 3 wihtH (X ;Z) finitely generated as an abelian group. Then
it follows rom HopFs classical theorem and Theorem 4.2 that

H*(X Q) E[x, y, z]
where deg x--3, deg y-2m--1, deg z-2n--1. H.(X ;Z) is finitely gen-
erated and therefore has torsion for only a finite number of primes.
Dold and Lashof [4] have shown that an associative H-space X has
the classifying space BX.

Then
H*(BX Z)P[u, v, w]

where deg u-4, deg v-2m, deg w-2n, for all sufficiently large prime
p.

This generalization of the Borel transgression the theorem is just-
ified by the paper [4] and [5], and is found in the paper [1], [6]. From
Corollary 2.2, it follows that for all sufficiently large prime p, m
satisfies one of the condition (A), and n satisfies one of the condition
(B) in that corollary. Then we get from Proposition 3.3 and Propo-
sition 3.4 that n-1, 2, 3, 4, or 6, m-1, 2, 3, 4, or 6.

Since we assumed that X is simply connected, the case n=l is
excluded. Thus the possible types of X are (3, 3, 3), (3, 3, 5), (3, 3, 7),
(3, 3, 11), (3, 5, 5), (3, 5, 7), (3, 5, 11), (3, 7, 7), (3, 7, 11), (3, 11, 11). If
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X is not simply connected and does not have the type (1, 1, ,), then
we apply Theorem.4.1 (L. Smith) to the univer.sal covering space X of
X together with Theorem 4.3 and we get that type of X is either
(1, 3, 3), (1, 3, 5), (1, 3, 7), or (1, 3, 11). If the type is (1, 1, ,), then by
Theorem 2.1, we obtain easily such a type is either (1, 1, 1), or (1, 1, 3).
Thus all the possible types of X are (1, 1, 1), (1, 1, 3), (1, 3, 3), (1, 3, 5),
(1, 3, 7), (1, 3, 11), (3, 3, 3), (3, 3, 5), (3, 3, 7), (3, 3, 11), (3, 5, 7), (3, 7, 11),
(3, 5, 5), (3, 5, 11), (3, 7, 7), (3, 11, 11).
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