170. On Extensions with Given Ramification

By Toyofumi TAKAHASHI Mathematical Institute Tôhoku University, Sendai (Comm. by Kenjiro SHODA, M.J.A., Oct. 12, 1968)

Let k be a number field of finite degree, and let S be a set of primes of k, including the achimedean ones. Let G be the Galois group of the maximal extension Ω of k unramified outside S. Throughout this paper we assume that S contains all primes above a fixed prime number l. Tate [7] has asserted that G has strict cohomological dimension 2 with respect to l, if k is totally imaginary in case l=2, but the proof has been unpublished. (Brumer [3] showed that G has cohomological dimension 2 with respect to l under the same assumptions.) We shall give here the proof of the above Tate's theorem (Section 1). As a corollary of this theorem, we obtain an arithmetic theorem and we get the l-adic independence of independent units (Section 2). Finally, we shall determine the structure of the connected component of the Sidèle class group. This is a generalization of the results of Weil [10] and Artin [1] (see also [2; Chap. IX]).

1. Cohomological dimension. Throughout this paper notations and terminologies are the same as in Tate [7]. By m we shall always understand a positive integer such that $mk_s = k_s$ where k_s is the ring of all S-integers of k. For any abelian group A, let A(l) denote the *l*-torsion part of A. Let μ denote the group of all roots of unity, and let μ_m denote the group of m-th roots of unity.

Theorem 1. Let \overline{J}^s denote the projection to S_0 of the idèle group of Ω , where S_0 is the set of non-archimedean primes in S. We put $E = \overline{J}^s(l)/\mu(l)$. Suppose that k is totally imaginary if l=2. Then, for any l-torsion module M, we have an isomorphism

$$H^2(k_s, M)^* \cong \operatorname{Hom}_G(M, E).$$

Proof. By our assumptions G has cohomological *l*-dimension 2. Let \overline{E} be a module dualisant for G with respect to *l*. We shall show $E = \overline{E}$. By [5; Chap. I, Annexe] we have $\overline{E} = \lim_{t \to T} D_2(\mathbb{Z}/l^t\mathbb{Z})$ where $D_2(\mathbb{Z}/m\mathbb{Z}) = \lim_{K \subset \overline{B}} H^2(K_s, \mathbb{Z}/m\mathbb{Z})^*$, the inductive limit is taken with respect to cores*. By Tate's duality theorem, we have a commutative exact

to cores*. By Tate's duality theorem, we have a commutative exact diagram

T. TAKAHASHI

[Vol. 44,

$$\begin{array}{c} H^{0}(K_{S}, \mu_{m}) \rightarrow \prod_{v \in S_{0}} H^{0}(K_{v}, \mu_{m}) \rightarrow H^{2}(K_{S}, \mathbb{Z}/m\mathbb{Z})^{*} \rightarrow H^{1}(K_{S}, \mu_{m}) \\ \downarrow \text{can.} \qquad \qquad \downarrow \text{can.} \qquad \qquad \downarrow \text{cores}^{*} \qquad \qquad \downarrow \text{res} \\ H^{0}(L_{S}, \mu_{m}) \rightarrow \prod_{w \in S_{0}} H^{0}(L_{w}, \mu_{m}) \rightarrow H^{2}(L_{S}, \mathbb{Z}/m\mathbb{Z})^{*} \rightarrow H^{1}(L_{S}, \mu_{m}) \end{array}$$

for $K \subset L \subset \Omega$. Hence we have an exact sequence $\mu_m \to \overline{J}_m^s \to D_2(\mathbb{Z}/m\mathbb{Z}) \to 0$, where \overline{J}_m^s is the subgroup of elements x of \overline{J}^s such that mx=0. Thus we get an exact sequence $\mu(l) \to \overline{J}^s(l) \to \overline{E} \to 0$, and the assertion is proved.

Lemma 1. For $v \notin S$, we have $H^1(\mathfrak{Q}_v, \mu(l)) = 0$, where \mathfrak{Q}_v is the ring of integers of the completion k_v of k at v.

Proof. Let s be a generator of the Galois group of the maximal unramified extension of k_v . We have $H^1(\mathfrak{O}_v, \mu(l))^* \cong H^0(\mathfrak{O}_v, \mu(l)^*)$ $= (\mu(l)/\mu(l)^{1-s})^*$. Since the sequence $0 \to H^0(\mathfrak{O}_v, \mu(l)) \to \mu(l) \xrightarrow{1-s} \mu(l)^{1-s} \to 0$ is exact and $H^0(\mathfrak{O}_v, \mu(l))$ is finite, $\mu(l)^{1-s}$ is not finite. On the other hand, all proper subgroups of $\mu(l)$ are finite. Hence we get $\mu(l)$ $= \mu(l)^{1-s}$. Q.E.D.

Lemma 2. The kernel Ker¹ $(k_s, \mu(l))$ of the canonical map $H^1(k_s, \mu(l)) \rightarrow \prod_{v \in S} H^1(k_v, \mu(l))$ is finite.

Proof. By Lemma 1 we have a commutative exact diagram

Hence the inflation $H^{1}(k_{s}, \mu(l)) \rightarrow H^{1}(k, \mu(l))$ induces an injection $\operatorname{Ker}^{1}(k_{s}, \mu(l)) \rightarrow \operatorname{Ker}^{1}(k, \mu(l))$. Therefore it is sufficient to show that $\operatorname{Ker}^{1}(k, \mu(l))$ is finite. Let Q(m) be the set of elements of k which are local *m*-th powers everywhere. Then $(Q(m):k^{m}) \leq 2([2; \operatorname{Chap. X}, \operatorname{Theorem 1}])$. Since $\operatorname{Ker}^{1}(k, \mu_{m}) = Q(m)/k^{m}$, we see that $\operatorname{Ker}^{1}(k, \mu(l)) = \lim_{t \to \infty} \operatorname{Ker}^{1}(k, \mu_{l^{t}})$ is a finite group of order at most 2. Q.E.D.

Theorem 2. G has strict cohomological l-dimension 2, except if l=2 and k is not totally imaginary.

Proof. It is sufficient to show that $H^{0}(k_{s}, E)$ never contains any subgroups isomorphic to Q_{l}/Z_{l} (cf. [5; Chap. I, Annexe]). We have the exact sequence $0 \rightarrow \mu(l) \rightarrow \overline{J}^{s}(l) \rightarrow E \rightarrow 0$. Passing to cohomology, we obtain the sequence $0 \rightarrow H^{0}(k_{s}, \mu(l)) \rightarrow \prod_{v \in S_{0}} H^{0}(k_{v}, \mu(l)) \rightarrow H^{0}(k_{s}, E)$ $\rightarrow H^{1}(k_{s}, \mu(l)) \rightarrow \prod_{v \in S_{0}} H^{1}(k_{v}, \mu(l))$. Hence we obtain an exact sequence $0 \rightarrow H^{0}(k_{s}, \mu(l)) \rightarrow \prod_{v \in S_{0}} H^{0}(k_{v}, \mu(l)) \rightarrow H^{0}(k_{s}, E) \rightarrow \operatorname{Ker}^{1}(k_{s}, \mu(l)) \rightarrow 0$. Since $H^{0}(k_{s}, \mu(l)), H^{0}(k_{v}, \mu(l))$ and $\operatorname{Ker}^{1}(k_{s}, \mu(l))$ are finite, $H^{0}(k_{s}, E)$ has no divisible element except 0. Q.E.D.

772

Corollary. For any G-module M, we have isomorphisms $H^{i}(k_{s}, M)(l) \cong \prod_{v \text{ arch}} H^{i}(k_{v}, M)(l) \quad (i \geq 3).$

Proof. This is an immediate consequence of [6; Lemma 3].

Let G(l) denote the Galois group of the maximal *l*-extension of k unramified outside S. It is easy to determine the number of generators and that of relations of G(l), using the exact sequence of Tate [7] and the equality [8; Theorem 2.2]. We omit the proof.

Proposition. Let r_2 be the number of complex primes of k. Suppose that S is finite. Then G(l) is a pro-l-group on $-\delta + \sum_{v \in S} \delta_v + 1 + \dim Q(l, S)/k^i$ generators with $-\delta + \sum_{v \in S} \delta_v - r_2 + \dim Q(l, S)/k^i$ relations, where Q(l, S) is the set of elements x of k such that $x \in k_v^i$ for all $v \in S$ and $\operatorname{ord}_v x \equiv 0 \mod l$ for all $v \notin S$, and δ (resp. δ_v) is equal to 0 if $\mu_l \subset k$ (resp. $\mu_l \subset k_v$).

Remark. If $\delta = 1$ (i.e., k contains the *l*-th roots of unity), $Q(l, S)/k^{l} = \text{Ker}^{1}(k_{s}, \mu_{l}) = \text{Ker}^{1}(k_{s}, \mathbb{Z}/l\mathbb{Z}) = (Cl_{s}/Cl_{s}^{l})^{*}$, where Cl_{s} is the quotient of the ideal class group of k by the subgroup generated by the classes of all primes in S. This is the case obtained by Brumer [3]. See also Šafarevič [4].

2. The l-adic independence of independent units.

Theorem 3. Let Q(m, S) be the set of all elements x of k such that $x \in k_v^m$ for all $v \in S$ and $\operatorname{ord}_v x \equiv 0 \mod m$ for all $v \notin S$. Then, for each m, there exists an integer m' such that $m'k_s = k_s$ and $Q(m', S) \subset k^m$.

Proof. By Corollary of Theorem 2 we have $H^2(k_s, \mathcal{Q}_p/Z_p) = H^3(k_s, \mathbb{Z})(p) = 0$ for $p \mid m$. According to [7; Theorem 3.1 (a)], we have an exact sequence $0 \rightarrow \operatorname{Ker}^1(k_s, \mu_m)^* \rightarrow H^2(k_s, \mathbb{Z}/m\mathbb{Z})$. Using the exact sequence $0 \rightarrow \mu_m \rightarrow \Omega \rightarrow \Omega^m \rightarrow 0$, we obtain $H^1(k_s, \mu_m) = k \cap \Omega^m/k^m$. By the theory of ramification in Kummer extensions, $k \cap \Omega^m$ coincides with the set of elements whose orders are divisible by m at each prime not in S. Hence we have $\operatorname{Ker}^1(k_s, \mu_m) = Q(m, S)/k^m$ and we get a commutative exact diagram

for $m \mid m'$. We obtain $\lim_{m \to \infty} Q(m, S)/k^m = 0$. Since $Q(m, S)/k^m$

=Ker¹(k_s , μ_m) are finite, the assertion is proved.

Corollary. Let $\varepsilon_1, \dots, \varepsilon_r$ be a system of independent units of k such that $\varepsilon_i \equiv 1 \mod v$ for all v above l. The ε_i are naturally imbed-

ded in the direct product $\prod_{v|l} (1+P_v)$ where P_v is the prime ideal of k_v . Since $\prod_{v|l} (1+P_v)$ is a abelian pro-l-group, it can be regarded as a Z_l -module.

Then $\varepsilon_1, \dots, \varepsilon_r$ are independent over Z_l in $\prod_{v|l} (1+P_v)$.

This corollary can be proved by the similar way as the proof of [2; Chap. IX, Theorem 2].

3. The structure of the connected component of the S-idèle class group. Let K/k be a Galois extension of finite degree unramified outside S with Galois group \overline{G} . We use following notations:

J: the idèle group of *K*, $U^s = \prod_{w \in S} U_w$ where U_w is the unit group of K_w , J_0 : the group of idèles of *K* of absolute value 1, $C^s = J/KU^s$: the *S*-idèle class group of *K*, $C_0^s = J_0/KU^s$, *H*: the connected component of *J*, D^s : the connected component of C^s , $H^s = KU^sH/KU^s$, $H_0^s = H^s \cap C_0^s$ and $D_0^s = D^s \cap C_0^s$.

We remark that C^s is a class formation for extensions unramified outside S (cf. [9]) and D^s is nothing but the kernel of the reciprocity map of C^s onto the Galois group of the maximal abelian extension of K unramified outside S. By the elementary theory of topological groups, the subgroup H^s of C^s is dense in D^s . Hence D^s is the completion of H^s . We have $D^s = \mathbf{R} \times D_0^s$ and $H^s = \mathbf{R} \times H_0^s$. Let r_1 and r_2 be the number of real primes of K and that of complex primes of K respectively. As usual we put $r = r_1 + r_2 - 1$.

 H_0^s is isomorphic to $W \times T^{r_2}$, where T is the unit circle of C and Wis a vector space over R of dimension r. Of course, the topology of W is different to the ordinary one. Let $\varepsilon_1, \dots, \varepsilon_r$ be a system of independent totally positive units such that $\varepsilon_i \equiv 1 \mod v$ for all nonarchimedean primes v in S. By E we denote the group of units generated by the ε_i . Then by Unit Theorem, E can be regarded as a lattice in W. By m we shall always understand a module whose prime factors are contained in S. Let E_m denote the group of elements of E which are congruent to 1 mod. m. Let $V = Re_1 + \dots + Re_r$ be a vector space over R of dimension r with the ordinary topology, and let f be the linear map of V into W such that $f(e_i) = \varepsilon_i$. We put L $= Ze_1 + \dots + Ze_r = f^{-1}(E)$ and $L_m = f^{-1}(E_m)$. For a subset X of V, f(X)is an open neighbourhood of 0 if and only if X is open and contains one of the lattices L_m . Hence the completion \hat{W} of W is isomorphic to $\lim V/L_m$. Therefore we have

m

$$D^{s} = \mathbf{R} \times (\lim_{\stackrel{\leftarrow}{\mathfrak{m}}} V/L_{\mathfrak{m}}) \times \mathbf{T}^{r_{2}}.$$

Proposition. D^s/H^s is uniquely l-divisible.

774

Proof. Since $D^s/H^s = \hat{W}/W$ and W is uniquely divisible, it is sufficient to show that \hat{W} is uniquely *l*-divisible. It is clear that \hat{W} is divisible. By Corollary of Theorem 3, for each module *m* there exists a module *m'* such that $E_{\mathfrak{m}'} \subset E^i_{\mathfrak{m}}$, hence $L_{\mathfrak{m}'} \subset lL_{\mathfrak{m}}$. This means that $\hat{W} = \lim_{\substack{\longleftarrow \\ \mathfrak{m} \\ }} V/L_{\mathfrak{m}}$ has no *l*-torsion part. Q.E.D.

Corollary.

$$\hat{H}^{i}(\bar{G}, D^{S})(l) = \begin{cases} (\mathbf{Z}/2\mathbf{Z})^{\alpha}, & \text{if i is even and } l=2, \\ 0, & \text{if i is odd or } l\neq 2, \end{cases}$$

where α is the number of ramified archimedean primes of k.

Theorem 4. Let S be a set of rational primes, including the archimedean one. Then we have

$$D^{s} \cong \mathbf{R} \times (V^{s}/\mathbf{Z})^{r} \times \mathbf{T}^{r_{2}}$$

and

 $(D^S)^* \cong \mathbf{R} \times \mathbf{Q}^r_S \times \mathbf{Z}^{r_2},$

where $V^{s} = \mathbf{R} \times \prod_{p \in S_{0}} \mathbf{Z}_{p}$ in which \mathbf{Z} is imbedded diagonally and \mathbf{Q}_{s} is the additive group of S-integers of \mathbf{Q} with the discrete topology.

Proof. By Corollary of Theorem 3, the filters $\{L_{\mathfrak{m}}\}$ and $\{mL\}$ are cofinal. Therefore we have $\lim_{\underset{\mathfrak{m}}{\longleftarrow}} V/L_{\mathfrak{m}} = \lim_{\underset{m}{\longleftarrow}} V/mL = (\lim_{\underset{\mathfrak{m}}{\longleftarrow}} R/mZ)^r$. Since $(\lim_{\underset{\mathfrak{m}}{\longleftarrow}} R/mZ)^* = Q_s = (V^s/Z)^*$, the theorem is proved.

References

- E. Artin: Representatives of the connected component of the idèle class group. Proc. Int. Symp. Alg. Number Theory, Tokyo-Nikko, 51-54 (1955).
- [2] E. Artin and J. Tate: Class Field Theory. Harvard (1961).
- [3] A. Brumer: Galois groups of extensions of algebraic number fields with given ramification. Michigan Math. J., 13, 33-40 (1966).
- [4] I. R. Šafarevič: Extensions with given ramification points (in Russian). Publ. Math. I.H.E.S., No. 18 (1963).
- [5] J.-P. Serre: Cohomologie Galoisienne. Springer Lecture Series, No. 5 (1963).
- [6] T. Takahashi: Galois cohomology of finitely generated modules (to appear in Tôhoku Math. J.).
- [7] J. Tate: Duality theorems in Galois cohomology over number fields. Proc. Int. Congr., Stockholm, 288-295 (1962).
- [8] —: On the conjectures of Birch and Swinnerton-Dyer and a geometric analog. Sém. Bourbaki, exp. 306 (1965-66).
- [9] K. Uchida: On Tate's duality theorems in Galois cohomology (to appear in Tôhoku Math. J.).
- [10] A. Weil: Sur la théorie du corps de classes. J. Math. Soc. Japan, 3, 1-35 (1951).