169. On Lacunary Trigonometric Series. II

By Shigeru Takahashi
Department of Mathematics, Kanazawa University, Kanazawa
(Comm. by Zyoiti Suetuna, M. J. A., Oct. 12, 1968)

§ 1. Introduction. In [3] we have proved
Theorem A. Let $\left\{n_{k}\right\}$ be a sequence of positive integers and $\left\{a_{k}\right\}$ a sequence of non-negative real numbers for which the conditions

$$
\begin{gather*}
n_{k+1}>n_{k}\left(1+c k^{-\alpha}\right), \quad k=1,2, \cdots, \tag{1.1}\\
A_{N}=\left(2^{-1} \sum_{k=1}^{N} a_{k}^{2}\right)^{1 / 2} \rightarrow+\infty, \quad \text { as } N \rightarrow+\infty, \tag{1.2}
\end{gather*}
$$

and

$$
\begin{equation*}
a_{N}=o\left(A_{N} N^{-\alpha}\right), \quad \text { as } N \rightarrow+\infty, \tag{1.3}
\end{equation*}
$$

are satisfied, where c and α are any given constants such that

$$
\begin{equation*}
c>0 \quad \text { and } \quad 0 \leq \alpha \leq 1 / 2 . \tag{1.4}
\end{equation*}
$$

Then we have, for all x,

$$
\begin{gather*}
\lim _{N \rightarrow \infty}\left|\left\{t ; t \in E, \sum_{k=1}^{N} a_{k c} \cos 2 \pi n_{k c}\left(t+\alpha_{k}\right) \leq x A_{N}\right\}\right| /|E| \tag{1.5}\\
\left.=(2 \pi)^{-1 / 2} \int_{-\infty}^{x} \exp \left(-u^{2} / 2\right) d u, *\right)
\end{gather*}
$$

where $E \subset[0,1]$ is any given set of positive measure and $\left\{\alpha_{k}\right\}$ any given sequence of real numbers.

This theorem was first proved by R. Salem and A. Zygmund in case of $\alpha=0$, where $\left\{n_{k}\right\}$ satisfies the so-called Hadamard's gap condition (cf. [4], (5.5), pp. 264-268). In that case they also remarked that under the hypothesis (1.2) the condition (1.3) is necessary for the validity of (1.5) (cf. [4], (5.27), pp. 268-269).

Further, in [2] P. Erdös has pointed out that for every positive constant c there exists a sequence of positive integers $\left\{n_{k}\right\}$ such that $n_{k+1}>n_{k}\left(1+c k^{-1 / 2}\right), k \geq 1$, and (1.5) is not true for $a_{k}=1, k \geq 1$, and $E=[0,1]$. But I could not follow his argument on the example.

The purpose of the present note is to prove the following
Theorem B. For any given constants $c>0$ and $0 \leq \alpha \leq 1 / 2$, there exist sequences of positive integers $\left\{n_{k}\right\}$ and non-negative real numbers $\left\{a_{k}\right\}$ for which the conditions (1.1), (1.2) and

$$
\begin{equation*}
a_{N}=O\left(A_{N} N^{-\alpha}\right), \quad \text { as } N \rightarrow+\infty, \tag{1.6}
\end{equation*}
$$

are satisfied, but (1.5) is not true for $E=[0,1]$ and $\alpha_{k}=0, k \geq 1$.
The above theorem shows that in Theorem A the condition (1.3) is
*) $|E|$ denotes the Lebesgue measure of a set E.
indispensable for the validity of (1.5). In §§ $3-5$ we prove Theorem B for $0<\alpha \leq 1 / 2$.
§2. Some lemmas. i. In this section let $\left\{X_{k}(\omega)\right\}$ be a sequence of independent random variables on some probability space (Ω, \mathfrak{B}, P) with vanishing mean values and finite variances. Putting $E\left(X_{k}^{2}\right)=\sigma_{k}^{2}$ and $s_{m}^{2}=\sum_{k=1}^{m} \sigma_{k}^{2}$, the theorem of Lindeberg reads as follows:

Theorem. (Cf. [1] pp. 56-57.) Under the hypotheses

$$
\begin{equation*}
s_{m} \rightarrow+\infty \text { and } \sigma_{m}=o\left(s_{m}\right), \text { as } m \rightarrow+\infty, \tag{2.1}
\end{equation*}
$$ a necessary and sufficient condition for the validity of the relation

$$
\begin{equation*}
\lim _{m \rightarrow \infty} P\left\{s_{m}^{-1} \sum_{k=1}^{m} X_{k}(\omega) \leq x\right\}=(2 \pi)^{-1 / 2} \int_{-\infty}^{x} \exp \left(-u^{2} / 2\right) d u \tag{2.2}
\end{equation*}
$$

for all x is that, for any given $\varepsilon>0$,

$$
\lim _{m \rightarrow \infty} s_{m}^{-2} \sum_{k=1}^{m} \int_{X_{k}>s s_{m}} X_{k}^{2}(\omega) d P(\omega)=0 .
$$

From the above theorem the following lemma is easily seen.
Lemma 1. Under the hypotheses (2.1), the relation (2.2) implies that, for any given $\varepsilon>0$,

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \sum_{k=1}^{m} P\left\{X_{k}(\omega)>\varepsilon s_{m}\right\}=0 \tag{2.3}
\end{equation*}
$$

ii. Lemma 2. Let m and l be any given positive integers. Then there exists a positive constant c_{0}, not depending on m and l, such that

$$
\left|\left\{t ; t \in[0,1],\left|\sum_{j=0}^{l} \cos 2 \pi m(j+1) t\right|>(l+1) / 3\right\}\right| \geq 2 c_{0} l^{-1}
$$

Proof. This can be easily seen from the relation

$$
\sum_{j=0}^{l} \cos 2 \pi m(j+1) t=\frac{\sin 2 \pi m(l+3 / 2) t}{2 \sin \pi m t}-1 / 2,
$$

provided if $\sin \pi m t \neq 0$.
§3. Construction of sequences. In the following let $c>0$ and $0<\alpha \leq 1 / 2$ be given constants in Theorem B. First let us put

$$
\left\{\begin{array}{l}
p(j)=\left[j^{1 / \alpha}\right], \tag{3.1}\\
l(j)=\operatorname{Min}\left\{\left[p^{\alpha}(j) / c\right], p(j+1)-p(j)-1\right\}, \\
\left.j_{0}=\operatorname{Min}\{j ; l(j) \geq 1\} . *\right\}
\end{array}\right.
$$

Since $p(j+1)-p(j) \sim \alpha^{-1} j^{(1-\alpha) / \alpha}$ and $p^{\alpha}(j) \sim j$, as $j \rightarrow+\infty$,**) we have

$$
\begin{equation*}
l(j) \sim \beta(\alpha) j, \quad \text { as } j \rightarrow+\infty \tag{3.2}
\end{equation*}
$$

where

$$
\beta(\alpha)= \begin{cases}1 / c, & \text { if } 0<\alpha<1 / 2, \tag{3.3}\\ \operatorname{Min}(2,1 / c), & \text { if } \alpha=1 / 2 .\end{cases}
$$

Next we put

$$
n_{1}=1 \text { and } n_{k+1}=\left[n_{k}\left(1+c k^{-\alpha}\right)+1\right], \text { for } k+1<p\left(j_{0}\right)
$$

If $n_{p(j)}, j \geq j_{0}$, is defined, then we put

[^0]\[

n_{p(j)+l}= $$
\begin{cases}n_{p(j)}(1+l), & \text { if } 1 \leq l \leq l(j), \\ {\left[n_{p(j)+l-1}\left\{1+c p^{-\alpha}(j)\right\}+1\right],} & \text { if } l(j)<l<p(j+1)-p(j) .\end{cases}
$$
\]

Further we put, for $j \geq j_{0}$,

$$
\begin{equation*}
n_{p(j)}=2^{q(j)}, \tag{3.4}
\end{equation*}
$$

where

$$
q(j)= \begin{cases}\operatorname{Min}\left[m ; 2^{m} / n_{p\left(j_{0}\right)-1}>1+c\left\{p\left(j_{0}\right)-1\right\}^{-\alpha},\right. & \text { if } j=j_{0}, \tag{3.5}\\ \operatorname{Min}\left[m ; 2^{m} / n_{p(j)-1}>1+c\{p(j)-1\}^{-\alpha}\right. & \text { if } j>j_{0} .\end{cases}
$$

Then it is clear that the sequence $\left\{n_{k}\right\}$ satisfies (1.1).
On the other hand we define $\left\{a_{k}\right\}$ as follows:

$$
a_{k}= \begin{cases}1, & \text { if } p(j) \leq k \leq p(j)+l(j), \tag{3.6}\\ 1 / k^{2}, & \text { if otherwise } .\end{cases}
$$

Then we have, by (3.6) and (3.2),

$$
\begin{equation*}
A_{p(m)+l(m)}^{2}=2^{-1} \sum_{j=j_{0}}^{m}\{l(j)+1\}+O(1) \sim \beta(\alpha) m^{2} / 4, \quad \text { as } m \rightarrow+\infty . \tag{3.7}
\end{equation*}
$$

Since $p^{\alpha}(j) \sim j$, as $j \rightarrow+\infty$, this sequence $\left\{a_{k}\right\}$ satisfies both of the conditions (1.2) and (1.6).

Further, if we put $S_{N}(t)=\sum_{k=1}^{N} a_{k} \cos 2 \pi n_{k} t$, then we have, by the definitions of $\left\{n_{k}\right\}$ and $\left\{a_{k}\right\}$, uniformly in t,

$$
\begin{equation*}
S_{p(m)+l(m)(t)}=\sum_{j=j_{0}}^{m} \sum_{l=0}^{l(j)} \cos \left\{2 \pi 2^{q(j)}(1+l) t\right\}+O(1), \quad \text { as } m \rightarrow+\infty \tag{3.8}
\end{equation*}
$$

$\S 4$. Independent functions. Let $x_{k}(t)$ be the k-th digit of the infinite dyadic expansion of $t, 0 \leq t \leq 1$, that is,

$$
\begin{equation*}
t=\sum_{k=1}^{\infty} x_{k}(t) 2^{-k}, \quad\left(x_{k}(t)=0 \text { or } 1\right) \tag{4.1}
\end{equation*}
$$

then $\left\{x_{k}(t)\right\}$ is a sequence of independent functions on the interval [0, 1]. Putting

$$
\begin{equation*}
\eta_{j}(t)=\sum_{k=q(j)}^{q(j+1)-1} x_{k}(t) 2^{-k}, \quad \text { for } j \geq j_{0} \tag{4.2}
\end{equation*}
$$

we define

$$
\left\{\begin{array}{l}
\mu_{j}=\int_{0}^{1} \sum_{l=0}^{l(j)} \cos 2 \pi 2^{q(j)}(l+1) \eta_{j}(t) d t, \tag{4.3}\\
Y_{j}(t)=\sum_{l=0}^{l(j)} \cos \left\{2 \pi 2^{q(j)}(l+1) \eta_{j}(t)\right\}-\mu_{j}, \\
\tau_{j}^{2}=\int_{0}^{1} Y_{j}^{2}(t) d t \text { and } t_{m}^{2}=\sum_{j=j_{0}}^{m} \tau_{j}^{2} .
\end{array}\right.
$$

Then we have, by (4.2) and (3.5),

$$
\begin{aligned}
& \sup _{t}\left|\sum_{l=0}^{l(j)} \cos \left\{2 \pi 2^{q(j)}(l+1) t\right\}-\sum_{l=0}^{l(j)} \cos 2 \pi\left\{2^{q(j)}(l+1) \eta_{j}(t)\right\}\right| \\
&=O\left(\sup _{t} 2^{q(j)} \sum_{k=q(j+1)}^{\infty} x_{k}(t) 2^{-k} \sum_{i=0}^{l(j)}(l+1)\right) \\
&=O\left(2^{q(j)} j^{2} \sum_{k=q(j+1)}^{\infty} 2^{-k}\right) \\
&=O\left(2^{q(j)-q(j+1)} j^{2}\right)=O\left(j^{-1}\right), \quad \text { as } j \rightarrow+\infty .
\end{aligned}
$$

Therefore, we have
(4.4) $\quad \sup _{t}\left|Y_{j}(t)-\sum_{i=0}^{l(j)} \cos 2 \pi 2^{q(j)}(l+1) t\right|=O\left(j^{-1}\right), \quad$ as $j \rightarrow+\infty$,
and, by (3.2) and (3.7),

$$
\begin{array}{rlr}
t_{m}^{2}= & 2^{-1} \sum_{j=j_{0}}^{m}(l(j)+1)^{2}+O(\log m) & \tag{4.5}\\
& \sim A_{p(m)+l(m)}^{2} \sim \beta(\alpha) m^{2} / 4, & \text { as } m \rightarrow+\infty
\end{array}
$$

Thus we obtain

$$
\begin{equation*}
t_{m} \rightarrow+\infty \quad \text { and } \quad \tau_{m}=o\left(t_{m}\right), \quad \text { as } m \rightarrow+\infty \tag{4.6}
\end{equation*}
$$

Further, we have, by (3.8) and (4.4),

$$
\begin{align*}
& \left|S_{p(m)+l(m)(t)}-\sum_{j=j_{0}}^{m} Y_{j}(t)\right|=O(\log m) \tag{4.7}\\
& \quad=o\left(A_{p(m)+l(m)}\right), \text { uniformly in } t, \text { as } m \rightarrow+\infty .
\end{align*}
$$

Since (4.5) and (3.2) imply that $\sqrt{\beta(\alpha)} t_{m} / 5<\{l([m / 2])+1\} / 4$, for $m \geq m_{0}$, we have, by (4.4)

$$
\begin{aligned}
& \sum_{j=m / 2}^{m}\left|\left\{t ; 0 \leq t \leq 1,\left|Y_{j}(t)\right|>\sqrt{\beta(\alpha)} t_{m} / 5\right\}\right| \\
& \quad \geq \sum_{j=m / 2}^{m}\left|\left[t ; 0 \leq t \leq 1, \sum_{l=0}^{l(j)} \cos 2 \pi 2^{q(j)}(l+1) t>\{l(j)+1\} / 3\right]\right|,
\end{aligned}
$$

and by Lemma 2, we have

$$
\begin{align*}
& \lim _{m \rightarrow \infty} \sum_{j=m / 2}^{m}\left|\left\{t ; 0 \leq t \leq 1,\left|Y_{j}(t)\right|>\sqrt{\beta(\alpha)} t_{m} / 5\right\}\right| \tag{4.8}\\
& \quad \geq \lim _{m \rightarrow \infty} 2 c_{0} \sum_{j=m / 2}^{m} l^{-1}(j) \geq \lim _{m \rightarrow \infty} c_{0} \beta(\alpha)^{-1} \sum_{j=m / 2}^{m} j^{-1}>0 .
\end{align*}
$$

§5. Proof of Theorem B. Suppose that (1.5) holds, that is,

$$
\begin{align*}
& \lim _{m \rightarrow \infty}\left|\left\{t ; 0 \leq t \leq 1, A_{p(m)+l(m)}^{-1} S_{p(m)+l(m)}(t) \leq x\right\}\right| \tag{5.1}\\
& \quad=(2 \pi)^{-1 / 2} \int_{-\infty}^{x} \exp \left(-u^{2} / 2\right) d u .
\end{align*}
$$

Then by (4.7) and (4.5), we have

$$
\begin{align*}
& \lim _{m \rightarrow \infty}\left|\left\{t ; 0 \leq t \leq 1, t_{m}^{-1} \sum_{j=j_{0}}^{m} Y_{j}(t) \leq x\right\}\right| \tag{5.2}\\
& \quad=(2 \pi)^{-1 / 2} \int_{-\infty}^{x} \exp \left(-u^{2} / 2\right) d u
\end{align*}
$$

On the other hand (4.1), (4.2), and (4.3) imply that $\left\{Y_{j}(t)\right\}$ is a sequence of independent functions with vanishing mean values and finite variances. By (5.2) and (4.6) we can apply Lemma 1 to $\left\{Y_{j}(t)\right\}$ and obtain

$$
\lim _{m \rightarrow \infty} \sum_{j=m / 2}^{m}\left|\left\{t ; 0 \leq t \leq 1,\left|Y_{j}(t)\right|>\sqrt{\beta(\alpha)} t_{m} / 5\right\}\right|=0 .
$$

This contradicts with (4.8).

References

[1] H. Cramér: Random Variable and its Probability Distribution. Cambridge Tract (1962).
[2] P. Erdös: On trigonometric sums with gaps. Magyar Tud. Akad. Kutatós Int. Közl., 7, 37-42 (1962).
[3] S. Takahashi: On lacunary trigonometric series. Proc. Japan Acad., 41, 503-506 (1965).
[4] A. Zygmund: Trigonometric Series. Vol. II. Cambridge University Press (1959).

[^0]: *) $[x]$ denotes the integral part of x.
 **) $f(j) \sim g(j)$, as $j \rightarrow+\infty$, means that $f(j) / g(j) \rightarrow 1$, as $j \rightarrow+\infty$.

