212. A Note on Traces on von Neumann Algebras

By Yoshinori Haga
Fuculty of Engineering, Ibaraki University
(Comm. by Kinjirô Kunugi, m. J. A., Nov. 12, 1968)

The purpose of this note is to show a theorem concerning traces on von Neumann algebras, motivated by a theorem of Kakutani [4] on divergent integrals. Our theorem may be seen as an extension of Kakutani's theorem to the non-commutative abstract integral theory.

Let M^{+}be the set of all positive elements of a von Neumann algebra \boldsymbol{M}. A trace on \boldsymbol{M}^{+}is a functional φ defined on \boldsymbol{M}^{+}, with values $\geqq 0$, finite or infinite, having the following properties:
(i) If $S, T \in M^{+}, \varphi(S+T)=\varphi(S)+\varphi(T)$.
(ii) If $S \in M^{+}$and λ is a number $\geqq 0, \varphi(\lambda S)=\lambda \varphi(S)$ (here we define $0 \cdot(+\infty)=0)$.
(iii) If $S \in M^{+}$and U is unitary, $\varphi\left(U S U^{-1}\right)=\varphi(S)$.

We say φ is finite if $\varphi(S)<+\infty$ for all $S \in \boldsymbol{M}^{+}$, and φ is normal if $\varphi\left(\sup S_{i}\right)=\sup \varphi\left(S_{i}\right)$ for every uniformly bounded increasing directed set $\left(S_{i}\right)$ in \boldsymbol{M}^{+}.

Theorem. Let \boldsymbol{M} be a von Neumann algebra, and φ and ψ be normal traces on \boldsymbol{M}^{+}. Suppose that
(1) $\quad \psi(S)<+\infty$ implies $\varphi(S)<+\infty$.

Then, there exist a positive constant K and a finite normal trace τ on \mathbf{M}^{+}such that

$$
\begin{equation*}
\varphi(S) \leqq K \psi(S)+\tau(S) \quad \text { for any } \quad S \in \boldsymbol{M}^{+} \tag{2}
\end{equation*}
$$

This theorem concerns essentially with semi-finite von Neumann algebras because we assume the existence of normal traces, but we state and prove it without any restrictions of the types of M.

The author would like to express his thanks to Prof. M. Nakamura and Prof. Z. Takeda for suggesting the problem and for their valuable comments in the preparations of this paper.

1. Preliminary results. \boldsymbol{M}^{P} and \boldsymbol{M}^{U} denote the sets of all projections and unitary operators of a von Neumann algebra M respectively. Let $E, F \in \boldsymbol{M}^{P}$. If there is a partially isometric $V \in \boldsymbol{M}$ such that $V^{*} V=E$ and $V V^{*}=F$, we say E and F are equivalent and denote by $E \sim F$. If there is a projection F_{1} such that $E \sim F_{1} \leqq F$, we write $E \prec F$. Let $\left(E_{i}\right)_{i \in I}$ (resp. $\left.\left(F_{i}\right)_{i \in I}\right)$ be a family of mutually orthogonal projections in M, and let $E=\sum_{i \in I} E_{i}$ (resp. $F=\sum_{i \in I} F_{i}$), then E and F are also projections in \boldsymbol{M}. Moreover, if $E_{i} \sim F_{i}\left(\right.$ resp. $\left.E_{i} \prec F_{i}\right)$ for all $i \in I$,
we have $E \sim F$ (resp. $E \prec F$). It is well-known that the relation \sim is a usual equivalence relation, and the relations \sim and \prec give an order in \boldsymbol{M} ([3] Chap. III. § 1.1). Next, let \boldsymbol{Z} be the center of \boldsymbol{M}. For any projection E in M, the minimal projection $F \in \boldsymbol{Z}$ such as $F \geqq E$ is called the central envelope of E and we denote it by $Z(E)$. It is known that $\boldsymbol{Z}(E)=\sup \left\{F \in \boldsymbol{M}^{P} \mid \boldsymbol{F} \sim E\right\}$ ([1] Lemme 3.1).

The following lemma is well-known (for example, [3] Chap. III. § 1. Theorème 1).

Lemma 1. For any $E, F \in M^{P}$, there exist $E^{\prime}, F^{\prime} \in M^{P}$ such that (i) $E^{\prime} \leqq E, F^{\prime} \leqq F, E^{\prime} \sim F^{\prime}$,
(ii) $\quad Z\left(E-E^{\prime}\right) \cap \boldsymbol{Z}\left(F-F^{\prime}\right)=0$.

The condition (ii) means that $E-E^{\prime}$ and $F-F^{\prime}$ have no comparable non-zero subprojections.

Using this lemma, we show the next one, which may probably be known, but we prove it for convenience sake.

Lemma 2. Let $\left(E_{i}\right)_{i \in I}$ be a family of mutually orthogonal projections in M, and $F \in M$ be a projection such that $F \prec \sum_{i \in I} E_{i}$. Then F can be written as a sum of $\left(F_{i}\right)_{i \in I}$ such that $F_{i} \prec E_{i}$ for all $i \in I$.

Proof. We well-order the set of indices I. Denoting the first index by 1 , we apply Lemma 1 to E_{1} and F. Then we get $E_{1}^{\prime}, F_{1} \in \boldsymbol{M}^{P}$ such that

$$
E_{1}^{\prime} \leqq E_{1}, \quad F_{1} \leqq F, \quad E_{1}^{\prime} \sim F_{1}
$$

and

$$
Z\left(F-F_{1}\right) \cap Z\left(E_{1}-E_{1}^{\prime}\right)=0
$$

Next, suppose that, for every $i<i_{0}$, we get an F_{i} such that

$$
F_{i} \leqq F-\sum_{k<i} F_{k}, \quad F_{i} \sim E_{i}^{\prime} \leqq E_{i}
$$

and

$$
\boldsymbol{Z}\left(F-\sum_{k \leq i} F_{k}\right) \cap \boldsymbol{Z}\left(E_{i}-E_{i}^{\prime}\right)=0 .
$$

Applying Lemma 1 to $F-\sum_{k<i_{0}} F_{k}$ and $E_{i_{0}}$, we get $F_{i_{0}}$ such that

$$
F_{i_{0}} \leqq F-\sum_{k<i_{0}} F_{k}, \quad F_{i_{0}} \sim E_{i_{0}}^{\prime} \leqq E_{i_{0}}
$$

and

$$
\boldsymbol{Z}\left(F-\sum_{k \leq i_{0}} F_{k}\right) \cap \boldsymbol{Z}\left(E_{i_{0}}-E_{i_{0}}^{\prime}\right)=0 .
$$

Hence by transfinite induction, we get a family $\left(F_{i}\right)_{i \in I}$ of orthogonal subprojections of F such that $F_{i} \prec E_{i}$. If we put $G=F-\sum_{i \in I} F_{i}$, then

$$
\left\{\begin{align*}
F & =\sum_{i \in I} F_{i}+G, \tag{3}\\
\sum_{i \in I} E_{i} & =\sum_{i \in I} E_{i}^{\prime}+\sum_{i \in I}\left(E_{i}-E_{i}^{\prime}\right)
\end{align*}\right.
$$

and

$$
\sum_{i \in I} F_{i} \sim \sum_{i \in I} E_{i}^{\prime} .
$$

Moreover, as $\boldsymbol{Z}(G) \cap \boldsymbol{Z}\left(E_{i}-E_{i}^{\prime}\right)=0$,

$$
\begin{aligned}
\boldsymbol{Z}(G) \cap \boldsymbol{Z}\left(\sum_{i \in I}\left(E_{i}-E_{i}^{\prime}\right)\right) & =\boldsymbol{Z}(G) \cap \sup _{i \in I}\left(\boldsymbol{Z}\left(E_{i}-E_{i}^{\prime}\right)\right) \\
& =\sup _{i \in I}\left\{\boldsymbol{Z}(G) \cap \boldsymbol{Z}\left(E_{i}-E_{i}^{\prime}\right)\right\}=0 .
\end{aligned}
$$

Hence the right sides of (3) are incompatible unless $G=0$. Therefore, the assumption $F \prec \sum_{i \in I} E_{i}$ implies $G=0$. Q.E.D.

Next, we state about weight-functions introduced by J. von Neumann ([5] Definition 7), and about the relation between weight-functions and traces investigated by J. Dixmier [2].

A weight-function on \boldsymbol{M}^{P} is a functional μ defined on \boldsymbol{M}^{P}, having the following properties:
(i) $0 \leqq \mu(E)<+\infty$ for any $E \in M^{P}$.
(ii) If $E_{1}, E_{2} \in M^{P}$ are orthogonal, $\mu\left(E_{1}+E_{2}\right)=\mu\left(E_{1}\right)+\mu\left(E_{2}\right)$.
(iii) If $E \in M^{P}$ and $U \in M^{U}, \mu\left(U E U^{-1}\right)=\mu(E)$.

We say μ is normal if $\mu\left(\sum_{i \in I} E_{i}\right)=\sum_{i \in I} \mu\left(E_{i}\right)$ for any family $\left(E_{i}\right)_{i \in I}$ of mutually orthogonal projections ([2] Definition 6.1).

An ideal of a von Neumann algebra M is called restricted, if it coincides with the ideal generated by the projections it contains ([2] Definition 3.3). $\quad \boldsymbol{M}$ itself is clearly a restricted ideal of \boldsymbol{M}. Therefore, if we simply replace the restricted ideal in Proposition 10, of [2] with M, we get the following lemma.

Lemma 3. There exists a one-to-one correspondence $\varphi \rightarrow \mu$ between finite traces on \boldsymbol{M}^{+}and weight-functions on \boldsymbol{M}^{P}. This correspondence is defined by $\varphi(E)=\mu(E)$ for $E \in \boldsymbol{M}^{P} . \quad \varphi$ is normal if and only if μ is normal.
2. Proof of Theorem.
(I) First we shall show the existence of a constant K such that, for any real number $\alpha \geqq 1$,

$$
\begin{equation*}
\psi(E) \leqq \alpha \quad \text { implies } \quad \varphi(E) \leqq \alpha K \quad \text { for any } \quad E \in \boldsymbol{M}^{P} . \tag{4}
\end{equation*}
$$

In fact, otherwise there would exist a sequence $\left(E_{n}\right)$ of projections in M such that

$$
\begin{equation*}
\psi\left(E_{n}\right) \leqq \alpha \quad \text { and } \quad(\alpha+1)^{n} \leqq \varphi\left(E_{n}\right)<+\infty \tag{5}
\end{equation*}
$$

If we put $S=\sum_{n=1}^{\infty} \frac{1}{(\alpha+1)^{n}} E_{n}$, we have

$$
\|S\| \leqq \sum_{n=1}^{\infty} \frac{1}{(\alpha+1)^{n}}\left\|E_{n}\right\|=\frac{1}{\alpha}<+\infty
$$

Therefore S is an element of \boldsymbol{M}^{+}as a uniform limit of finite linear combinations of E_{n} with positive coefficients. Then, by the normality and inequalities (5)

$$
\psi(S)=\sum_{n=1}^{\infty} \frac{1}{(\alpha+1)^{n}} \psi\left(E_{n}\right) \leqq \sum_{n=1}^{\infty} \frac{\alpha}{(\alpha+1)^{n}}<+\infty,
$$

while

$$
\varphi(S)=\sum_{n=1}^{\infty} \frac{1}{(\alpha+1)^{n}} \varphi\left(E_{n}\right) \geqq \sum_{n=1}^{\infty} 1=+\infty .
$$

This contradicts to the assumption (1). Thus we see that there exists a constant K_{α} depending on α such that
(6) $\quad \psi(E) \leqq \alpha \quad$ implies $\quad \varphi(E) \leqq \alpha K_{\alpha} \quad$ for any $\quad E \in M^{P}$.

We must show that these K_{α} can be chosen independently on α. If $\left(K_{\alpha}\right)_{\alpha \geq 1}$ is bounded, we may put $K=\sup _{\alpha \geq 1} K_{\alpha}$. Hence if there is no constant K independent on α, $\left(K_{\alpha}\right)_{\alpha \geqq 1}$ would be unbounded. Therefore, for every integer n, there would exist $\alpha_{n} \geqq 1$ and $E_{n} \in M^{P}$ such that (7) $\psi\left(E_{n}\right) \leqq \alpha_{n}$ and $\alpha_{n} n \leqq \varphi\left(E_{n}\right)$.

If we put $T=\sum_{n=1}^{\infty} \frac{1}{n^{2} \alpha_{n}} E_{n}$, we have

$$
\|T\| \leqq \sum_{n=1}^{\infty} \frac{1}{n^{2} \alpha_{n}}\left\|E_{n}\right\| \leqq \sum_{n=1}^{\infty} \frac{1}{n^{2}}<+\infty .
$$

Hence $T \in M^{+}$. Then, by the normality and (7)

$$
\psi(T)=\sum_{n=1}^{\infty} \frac{1}{n^{2} \alpha_{n}} \psi\left(E_{n}\right) \leqq \sum_{n=1}^{\infty} \frac{1}{n^{2}}<+\infty,
$$

while

$$
\varphi(T)=\sum_{n=1}^{\infty} \frac{1}{n^{2} \alpha_{n}} \varphi\left(E_{n}\right) \geqq \sum_{n=1}^{\infty} \frac{1}{n}=+\infty
$$

contrary to (1). This assures the existence of K.
(II) For any $E \in M^{P}$ with $\psi(E)<+\infty$, let α be a real number such that $0 \leqq \alpha-1 \leqq \psi(E)<\alpha$. Then, by the result of (I), we have $\varphi(E) \leqq \alpha K \leqq(\psi(E)+1) K$. Hence
(8) $\psi(E)<+\infty$ implies $\varphi(E)-K \psi(E) \leqq K$.

Now, for any $E \in \boldsymbol{M}^{P}$, we define
(9) $\quad \mu(E)=\sup \{\varphi(F)-K \psi(F) \mid F \prec E, \psi(F)<+\infty\}$
or equivalently

$$
=\sup \{\varphi(F)-K \psi(F) \mid F \leqq E, \psi(F)<+\infty\}
$$

and we shall show that μ is a normal weight-function on \boldsymbol{M}^{P}.
(i) $0 \leqq \mu(E) \leqq K$: From (8) clearly $\mu(E) \leqq K$. Put $F=0$ in (9), then $\varphi(F)-K \psi(F)=0$. Hence $\mu(E) \geqq 0$.

$$
\begin{aligned}
& \text { (ii) If } E_{1}, E_{2} \in M^{P} \text { are orthogonal, } \mu\left(E_{1}+E_{2}\right)=\mu\left(E_{1}\right)+\mu\left(E_{2}\right) \text { : } \\
& \mu\left(E_{1}\right)+\mu\left(E_{2}\right)=\sup \left\{\varphi\left(F_{1}\right)-K \psi\left(F_{1}\right) \mid F_{1} \leqq E_{1}, \psi\left(F_{1}\right)<+\infty\right\} \\
& \quad \quad \sup \left\{\varphi\left(F_{2}\right)-K \psi\left(F_{2}\right) \mid F_{2} \leqq E_{2}, \psi\left(F_{2}\right)<+\infty\right\} \\
& =\sup \left\{\varphi\left(F_{1}+F_{2}\right)-K \psi\left(F_{1}+F_{2}\right) \mid F_{k} \leqq E_{k}, \psi\left(F_{k}\right)<+\infty(k=1,2)\right\} \\
& \leqq \\
& \quad \sup \left\{\varphi(F)-K \psi(F) \mid F \leqq E_{1}+E_{2}, \psi(F)<+\infty\right\} \\
& =\mu\left(E_{1}+E_{2}\right) .
\end{aligned}
$$

On the other hand, making use of Lemma 2,

$$
\begin{aligned}
& \mu\left(E_{1}+E_{2}\right)=\sup \left\{\varphi(F)-K \psi(F) \mid F \prec E_{1}+E_{2}, \psi(F)<+\infty\right\} \\
& \quad \leqq \sup \left\{\varphi\left(F_{1}+F_{2}\right)-K \psi\left(F_{1}+F_{2}\right) \mid F_{k} \prec E_{k}, \psi\left(F_{k}\right)<+\infty(k=1,2)\right\} \\
& \quad=\sup \left\{\varphi\left(F_{1}\right)-K \psi\left(F_{1}\right) \mid F_{1} \prec E_{1}, \psi\left(F_{1}\right)<+\infty\right\}
\end{aligned}
$$

$$
\begin{aligned}
&+\sup _{\left\{\varphi\left(F_{2}\right)-K \psi\left(F_{2}\right) \mid F_{2} \prec E_{2}, \psi\left(F_{2}\right)<+\infty\right\}}^{=} \\
&=\mu\left(E_{1}\right)+\mu\left(E_{2}\right) .
\end{aligned}
$$

(iii) $\mu\left(U E U^{-1}\right)=\mu(E)\left(U \in M^{U}\right)$: Obvious from $U E U^{-1} \sim E$.
(iv) Normality: Let $\left(E_{i}\right)_{i \in I}$ be a family of mutually orthogonal projections in M. Let J be any finite subset of I, then $\sum_{i \in J} E_{i}$ is an increasing directed set under the order defined by the inclusion of subsets J, and $\sum_{i \in I} E_{i}=\sup _{J} \sum_{i \in J} E_{i}$. Therefore, by the finite additivity of μ shown in (ii), we have

$$
\sum_{i \in I} \mu\left(E_{i}\right)=\sup _{J} \sum_{i \in J} \mu\left(E_{i}\right)=\sup _{J} \mu\left(\sum_{i \in J} E_{i}\right) \leqq \mu\left(\sup _{J} \sum_{i \in J} E_{i}\right)=\mu\left(\sum_{i \in I} E_{i}\right) .
$$

On the other hand, making use of Lemma 2,

$$
\begin{aligned}
\mu\left(\sum_{i \in I} E_{i}\right) & =\sup \left\{\varphi(F)-K \psi(F) \mid F \prec \sum_{i \in I} F_{i}, \psi(F)<+\infty\right\} \\
& \leqq \sup \left\{\varphi\left(\sum_{i \in I} F_{i}\right)-K \psi\left(\sum_{i \in I} F_{i}\right) \mid F_{i} \prec E_{i}, \psi\left(F_{i}\right)<+\infty(i \in I)\right\} \\
& =\sum_{i \in I} \sup \left\{\varphi\left(F_{i}\right)-K \psi\left(F_{i}\right) \mid F_{i} \prec E_{i}, \psi\left(F_{i}\right)<+\infty\right\} \\
& =\sum_{i \in I} \mu\left(E_{i}\right) .
\end{aligned}
$$

(III) Applying Lemma 3, we extend the normal weight-function μ to a finite normal trace τ on \boldsymbol{M}^{+}. Then, for any $E \in \boldsymbol{M}^{P}$,

$$
\varphi(E) \leqq K \psi(E)+\tau(E)
$$

by (8) and (9) if $\psi(E)<+\infty$, and in the trivial sense if $\psi(E)=+\infty$. Therefore,

$$
\varphi\left(S_{n}\right) \leqq K \psi\left(S_{n}\right)+\tau\left(S_{n}\right),
$$

for operators of the form $S_{n}=\sum_{k=1}^{n} \lambda_{k} E_{k}$, where $\left(E_{k}\right)_{1 \leqq k \leq n}$ are orthogonal projections and $\left(\lambda_{k}\right)_{1 \leq k \leq n}$ are positive numbers. Finally, since any $S \in \boldsymbol{M}^{+}$can be written as a uniform limit from below of such S_{n}, and φ, ψ, and τ are all normal, we can conclude

$$
\varphi(S) \leqq K \psi(S)+\tau(S) \quad \text { for any } \quad S \in \boldsymbol{M}^{+} .
$$

3. In this last section, we show that our theorem includes a theorem of [4] as a special case.

Consider the measure space consisting of the unit interval $\Omega=\{\omega \mid 0$ $\leqq \omega \leqq 1\}$, Borel sets, and Lebesgue measure. Let \boldsymbol{M} be the von Neumann algebra of all multiplications by bounded measurable functions, acting on the Hilbert space $L^{2}(\Omega)$. Let $x(\omega)$ and $y(\omega)$ be real-valued non-negative measurable functions defined on Ω, not necessarily integrable. If we define

$$
\varphi(S)=\int_{\Omega} x(\omega) S(\omega) d \omega
$$

and

$$
\psi(S)=\int_{\Omega} y(\omega) S(\omega) d \omega \quad \text { for } \quad S(\omega) \in M^{+}
$$

we get normal traces φ and ψ on M^{+}, corresponding to the functions
$x(\omega)$ and $y(\omega)$ respectively. Suppose that
(10) $\quad \int_{\Omega} y(\omega) S(\omega) d \omega<+\infty \quad$ implies $\int_{\Omega} x(\omega) S(\omega) d \omega<+\infty$

$$
\text { for any } \quad S(\omega) \in M^{+} .
$$

Then, our theorem shows that there exist a constant K and a finite normal trace τ on M^{+}such that

$$
\varphi(S) \leqq K \psi(S)+\tau(S) \quad \text { for any } \quad S \in M^{+}
$$

Since τ is normal, $\tau(S)$ can be written as follows with some non-negative and integrable function $z(\omega)$ on Ω :

$$
\tau(S)=\int_{Q} z(\omega) S(\omega) d \omega
$$

Therefore

$$
\begin{align*}
& \int_{\Omega} x(\omega) S(\omega) d \omega \leqq K \int_{\Omega} y(\omega) S(\omega) d \omega+\int_{\Omega} z(\omega) S(\omega) d \omega \tag{11}\\
& \text { for any } \quad S(\omega) \in M^{+},
\end{align*}
$$

and hence

$$
\begin{equation*}
x(\omega) \leqq K y(\omega)+z(\omega) \quad \text { a.e. } \tag{12}
\end{equation*}
$$

Thus we get the following corollary.
Corollary. Let $x(\omega)$ and $y(\omega)$ be real-valued non-negative measurable functions on Ω, not necessarily integrable on Ω. If (10) is satisfied, there exist a constant K and an integrable function $z(\omega)$ which satisfy (12).

In Theorem 1 of [4], the same conclusion was obtained under the following condition :

$$
\begin{equation*}
\int_{E} y(\omega) d \omega<+\infty \quad \text { implies } \quad \int_{E} x(\omega) d \omega<+\infty \tag{13}
\end{equation*}
$$

for any measurable subset E of Ω.
But, in this case, the conclusion (12) implies (11), and hence (10) is also valid. Therefore (10) and (13) are equivalent. Thus, the above corollary is merely another version of Theorem 1 of [4].

References

[1] J. Dixmier: Les anneaux d'opérateurs de class finie. Ann. Ec. Norm. Sup., 66, 209-261 (1949).
[2] -: Application dans les anneaux d'opérateurs. Compositio Math., 10, 1-55 (1952).
[3] _-: Les algébres d'opérateurs dans l'espace hilbertien. Gauthier-Villars, Paris (1957).
[4] S. Kakutani: Notes on divergent series and integrals. Proc. Japan Acad., 20, 74-76 (1944).
[5] J. von Neumann: On rings of operators. Reduction theory. Ann. Math., 50, 401-485 (1949).

