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199. On a Problem of MacLane

By Jirokichi NAGATOMO
Department of Mathematics, Chiba University, Chiba

(Comm. by Zyoiti SUETUNA, M. J.A., Nov. 12, 1968)

1. Let f(z) be a non-constant holomorphic function in
having asymptotic values at each point of a dense subset on {Izl=l}.
Such a function is said to belong to the class (MacLane [1]).
MacLane proposed a problem"

If f(z) and g(z) belong to d, do f(z)+ g(z) and f(z)g(z) belong to

Ryan and Barth [2] answered to this negatively, and raised a
further question"

If f(z) e d and b(z) is bounded, are b(z)f(z) e ? (We suppose,
of course, that b(z)f(z) is not a constant.)

In the present note, we will answer to this positively but only
partly. That is, we will prove the following

Theorem A. Let b(z) be a function, holomorphic and bounded in
{Izl 1}, having non-zero Fatou limits on {Iz[= 1} except on a set of the
first Baire category. Then, if f(z) e d, we have b(z)f(z) e

2. For the sake of convenience, we repeat the definitions due to
MacLane [1], with slight modifications in notations.

An arc F" z=z(t), 0=<t 1, in {Izll} is said to be the path ending
at a point , I1=1, if z(t)- as t--.1. A function f(z) is said to have
an asymptotic value a (a= c permitted) at , if there exists a path F
ending at on which f(z) has the limit a, i.e., if f(z(t))-.a as t--*l.
The set of these points is denoted by A(a). That is, A(a) is the set
at each point of which f(z) has the asymptotic value a. We put

A- C) A(a), A--A u A(oo).
A function f(z) is defined to belong to the class if f(z) is holo-

morphic and non-constant in {Izl K1} and the set A is dense on {Izl= 1}.
Next we define the sets By and B. A point , I1=1, belongs to

By if and only if there exists a path F ending at , on which f(z) is
bounded by some finite constant M. The bound M may vary as and
F vary. We put

B:=B: U A:(c).
f(z) is defined to belong to the elass . ff f(z) is holomorphie and

non-constant in {Iz] <1} and the set B: is dense on {]z]= 1}.
The set {z ]f(z) l-2}, where 2_>_0 is a constant, is ealled eve set



880 J. NA(ATOM0 [Vol. 44,

and denoted by Lx(). For each r, 0rl, let the components

be A,(r), i e I. Let ,(r)=diam. o A(r) and put
(r)--sup (r)

with (r)--0 if I is void. Clearly 3(r) as r/z. We shall say that the
level set L() ends at points o {]zl-1} i and only if (r)0 as

f(z) is defined to belong to the class _/ i f(z) is holomorphic
and non-constant in (Izl <1} and every level set L() ends at points of
{Izl-1}.

MacLane proved the ollowing important
Theorem M. --_--
3. Now we prove our Theorem A. Suppose that b(z)f(z) ,_.

By Theorem M, b(z)f(z) _63 and hence there exists an are
such that
(3.1) Bx T--
Since a fortiori
(3.2) S5 fq ,
B fq y must be void. Then there exists a sequence of arcs {C} in
{[zl<l} such that (see [1], p. 15).
(3.3) CfqC- if nero;Cy and

Let
inf If(z)lc as nc.

/- inf If(z)l,
,- {e" .=<t=</},
S=(z [zl<l,

By choosing suitably, we may assume that
(3.4) C is a cross-cut of the sector S and, if nm, C separates C

from .
Then ([1], Theorem 3) TAe(c), i.e., for any point e y there is

a path F() ending at such that f(z)c on F(). But because of
(3.1)

liml b(z)f(z) < + c.
()

Take cd,/3’ (c <c’</3’</3) and put
,’-{e";

For a natural number N we set
(3.5) Er-( e y’; there exists a path F() ending at , on which

f(z)c and lim b(z)f(z) I__< N}.
E is a closed set. To prove this, let e E and -0. We will
construct a path E(0) satisfying the condition (3.5).

For each n, we can easily find a point z e F() such that

(3.6) Zn--l<1___, f(z)l> lt, b(z,)f(z,,)l <N+1.
n n
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Then

(3.7) Zno and lim lb(zn)f(Zn)lN, as n-.c.

We may assume that aarg zn/ and IZnl Zn+ll, n--l, 2, .... Con-
necting these points by segments in order, we get a path (Jordan arc)
/" which tends monotonely to {]zl-1}, lying in the sector a <arg zfl,
and ends at 0.

1 1 and let R(a) R() be theLet =arg o---, fl=arg 0+ -,
radii to ei%, ei respectively.

Let E(n, k) be the domain bounded by C, Cn+l, R(a), R(fl), and
let the components of L](/) E(n, k) be l(n, k;i). I nk, each of
l(n, k;i) is apart rom Cn and Cn/. Put
(3.8) ,=max. diam. of l(n, k;i).

Since f(z) e .
(3.9) ,-0 as n-c for any fixed k.

Let k-1. There exists-an n such that if n>=n, any curve l(n, k;i)
which intersects with F’ is contained in E(n, 1). Hence any portions
of F’ in E(n, 1), on which If(z)l[, may be replaced by Jordan sub-
arcs of l(n, 1;i). Making such replacements (finite in number for
any n) or each n>=n, we obtain a path F such that

limlf(z) l>_-/ on F.
F tends to 0 and contains all z, so that on F li__m]b(z)f(z)l<=N.

Next we find an n such that if n >n, any curve l(n, 2; ]) which
intersects with F is contained in E(n, 2). Hence any portions of F
in E(n, 2), on which If(z)l[., may be replaced by Jordan subarcs o
l(n, 2;])and we obtain a path F which tends to 0 and contains all

z. Similarly, we can construct F, F,
Continuing this procedure indefinitely, we obtain a path F(0)

which obviously has the required property (3.5).

4. Because of (3.1), we have E-y’. Since E, N-l, 2,

are closed, some E, say E, must contain an arc * by the theorem
of Baire. For every e y* there is a sequence Zn--Zn(), n--l, 2,
such that Zn----> and

(4.1) ]f(zn)lln, Ib(zn)f(Zn)lN--
j"

n

Let {} be a countable set, dense on ’*.
from (4..1) we have

Write Zn(l)-- Zn, . Then,

(4.2) ib(zn,)l 2N__, whatever may vary.
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Zl,2 Z2,2 Z3,2 Z4,2 Zn,2 2

Z, Z2, Z, Z, Zn, -*

From the double sequence {z,, n>= l} we orm a sequence Z} as shown
in the above figure, i.e.,

Z--z,, Z-z,, Z--z2,2, Z-z,, Z--z,, ....
By (4.2), {Z} has the ollowing properties"
(4.3) For any subsequence {Z} of {Z}, b(Z)O as k-c
(4.4) For any point e y* and any e 0, there is a Z such that

I-Zl<o
5. Let V((?, ) be a Stolz domain with vertex at -e and with

opening 2(?"

We will show that the set
F--{ e y*; or any , V((?, ) contains only finitely many points

of Z’s} is of the first Baire category on
Let K be an integer and put
F((?, K)-{ e y* V((, ) contains exactly K points o Z’s}.

Since F- ( { F((?, K)}, it suffices to show that F((?, K) is nowhere
KOo<,<._

dense on y* for fixed ( and K. =Take a subarc c 7". If F((?, K) e, V((?, ) contains Z
i=l, 2, ..., K. Let L-{z arg (1--ze-0 --(?} and L.-{z; arg (1
-ze-O-} be the sides of V((?, ), and let Z, Zn be the points
nearest to L, L2 respectively. Let -e and 2-e2 be the points
such that arg (1-Ze-0 -(, arg (1-Ze-2)-. By (4.4) there
is a point Z such that argZ(72 and Z e V((, ). Let -e
and -e2 be the points such that arg(1-Ze-0---(?, arg(1
--Ze-)--. If IZI is sufficiently near to 1, the arc
82} is contained in the arc {e; (?=<?__<(72}. Hence for any e ,
V((?, ) contains (K/ 1) points Z, Z, ..., Z and Z, so that e F
(, K) and F((?, K)-. This shows that F((?, K) is nowhere dense
and F is of the first category.

Hence the set H-7*\F is of the second category. If e H, V
((?, ) contains infinitely many points of Z’s or some (?. Thus if we
put

H={ e H; b(z) has the Fatou limit 0 at },
H2={ e H; b(z) has no Fatou limit at },

then H--H U H2. But by our assumption, H and H must be of the
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first category. This contradiction proves our theorem.
The author wishes to acknowledge with grateful thanks the help

of Prof. O. Ishikawa during the writing of this paper.
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