232. On M- and M*-Spaces

By Tadashi ISHII Utsunomiya University

(Comm. by Kinjirô KUNUGI, M. J. A., Dec. 12, 1968)

1. In [2], K. Morita has introduced the notion of *M*-spaces. A topological space X is an *M*-space if there exists a normal sequence $\{\mathfrak{A}_i | i=1, 2, \cdots\}$ of open coverings of X satisfying the condition (M) below:

(M) $\begin{cases} \text{ If } \{K_i\} \text{ is a sequence of non-empty subsets of } X \text{ such that } \\ K_{i+1} \subset K_i, \ K_i \subset \text{St}(x_0, \mathfrak{A}_i) \text{ for each } i \text{ and for some fixed point } x_0 \\ \text{ of } X, \text{ then } \bar{K}_i \neq \phi. \end{cases}$

On the other hand, in [1], we introduced the notion of M^* -spaces. A topological space X is an M^* -space if there exists a sequence $\{\mathfrak{F}_i | i = 1, 2, \dots\}$ of locally finite closed coverings of X satisfying Condition (M), where we may assume without loss of generality that \mathfrak{F}_{i+1} is a refinement of \mathfrak{F}_i for each *i*. As for the relations between M- and M^* -spaces, the following results are proved by K. Morita [3].

(1) There exists an M^* -space which is locally compact Hausdorff but is not an M-space.

(2) A collectionwise normal space is an *M*-space if and only if it is an M^* -space.

The first result is a direct consequence of the following (cf. [3]): There is a perfect map $f: X \rightarrow Y$ such that X is an M-space but Y is not, and such that X, Y are locally compact Hausdorff spaces. In fact, the space Y is an M*-space as the image under a perfect map fof an M*-space X by [1, Theorem 2.3 in I].¹⁾ However, it seems to be unknown whether a normal M*-space is an M-space or not. The purpose of this paper is to give an affirmative answer for this problem.

2. We shall prove the following main theorem.

Theorem 2.1. A normal space X is an M-space if and only if it is an M^* -space.

Before proving Theorem 2.1, we mention a fundamental lemma, which is essentially due to K. Morita [3].

Lemma 2.2. Let X be an M*-space with a sequence $\{\mathfrak{F}_i\}$ of locally finite closed coverings of X satisfying Condition (M), where \mathfrak{F}_{i+1} is a refinement of \mathfrak{F}_i for each i. Then the following statements are valid.

(a) If $\{K_i\}$ is a sequence of non-empty subsets of X such that

¹⁾ In [1, Theorem 2.3 in I], the assumption that X is T_1 is unnecessary.

 $K_{i+1} \subset K_i, K_i \subset \operatorname{St}^k(x_0, \mathfrak{F}_i), i=1, 2, \cdots, \text{ for some fixed positive integer}$ k and for some fixed point x_0 of X, then $\cap \overline{K}_i \neq \phi$, where $\operatorname{St}^k(x_0, \mathfrak{F}_i)$ denotes the k-times iterated star of a point x_0 in each covering \mathfrak{F}_i .

(b) Let $\mathfrak{W}_i = \{ \operatorname{St}(F, \mathfrak{F}_i) | F \in \mathfrak{F}_i \}$ for each *i*. Then the sequence $\{\mathfrak{W}_i\}$ of the coverings of X satisfies Condition (M).

Proof of Theorem 2.1. Since any *M*-space is clearly an *M**space, we shall prove only that a normal *M**-space X is an *M*-space. Let $\{\mathfrak{F}_i | i=1, 2, \dots\}$ be a sequence of locally finite closed coverings of X satisfying Condition (M), where we may assume that \mathfrak{F}_{i+1} is a refinement of \mathfrak{F}_i for each *i*. If we put $C(x) = \bigcap \{ \operatorname{St}^2(x, \mathfrak{F}_i) | i=1, 2, \dots \}$ for any point x of X, then the set C(x) is countably compact by Lemma 2.2 (a). As is easily shown, if \mathfrak{F} is any locally finite collection of the subsets of X, then a countably compact subset C of X intersects with only finite members of \mathfrak{F} . Hence the set C(x) intersects with only finite members of each \mathfrak{F}_n . Let us put

 $U_n(x) = X - \bigcup \{F \mid F \cap C(x) = \phi, F \in \mathfrak{F}_n\}, n = 1, 2, \cdots$

for any point x of X. Then each $U_n(x)$ is open in X, and $C(x) \subset U_n(x)$. Therefore it follows from Lemma 2.2 (a) that for each n there exists some positive integer k(n) such that $\operatorname{St}^2(x, \mathfrak{F}_{k(n)}) \subset U_n(x)$. Since $\operatorname{St}^2(x, \mathfrak{F}_{k(n)})$ intersects with only finite members of \mathfrak{F}_n , $\operatorname{St}(x, \mathfrak{F}_{k(n)})$ intersects with only finite members of $\{\operatorname{St}(F, \mathfrak{F}_{k(n)}) | F \in \mathfrak{F}_n\}$. Now for each n and k, let us denote by G_{nk} the subset of X which consists of points x of X such that $\operatorname{St}(x, \mathfrak{F}_k)$ intersects with only finite members of $\{\operatorname{St}(F, \mathfrak{F}_k) | F \in \mathfrak{F}_n\}$. Then each G_{nk} is an open subset of X. Indeed, let $x \in G_{nk}$, and put

$$H_k(x) = X - \cup \{F \mid x \notin F, F \in \mathfrak{F}_k\}.$$

Then $H_k(x)$ is open in X, and if $y \in H_k(x)$, then $\operatorname{St}(y, \mathfrak{F}_k) \subset \operatorname{St}(x, \mathfrak{F}_k)$, which implies that $y \in G_{nk}$. Hence each G_{nk} is open in X. Further it follows easily that $G_{nk} \subset G_{n,k+1}$, $k=1,2,\cdots$, and that $\{G_{nk} | k = 1,2,\cdots\}$ is a covering of X for each n. On the other hand, a normal M^* -space X is countably paracompact by [1, Theorem 2.7 in I]. Therefore for each n there exists a locally finite open refinement $\{H_{nk} | k = 1,2,\cdots\}$ of a countable open covering $\{G_{nk} | k=1,2,\cdots\}$ of X such that $\overline{H}_{nk} \subset G_{nk}, k=1,2,\cdots$. Let us put

$$\mathfrak{S}(n,k) = \{H_{nk} \cap \operatorname{Int}(\operatorname{St}(F,\mathfrak{F}_{\max(n,k)})) | F \in \mathfrak{F}_n\}, \ \mathfrak{S}(n) = \cup \{\mathfrak{S}(n,k) | k = 1, 2, \cdots \},$$

for each *n* and *k*. Then each $\mathfrak{H}(n, k)$ is a locally finite collection of open subsets of *X*. Indeed, let $x \in \overline{H}_{nk}$. Since $\overline{H}_{nk} \subset G_{n,\max(n,k)}$, $\operatorname{St}(x, \mathfrak{F}_{\max(n,k)})$ intersects with only finite members of $\{\operatorname{St}(F, \mathfrak{F}_{\max(n,k)}) | F \in \mathfrak{F}_n\}$, and hence $\operatorname{Int}(\operatorname{St}(x, \mathfrak{F}_{\max(n,k)}))$ intersects with only finite members of $\{\operatorname{Int}(\operatorname{St}(F, \mathfrak{F}_{\max(n,k)})) | F \in \mathfrak{F}_n\}$. This shows that $\mathfrak{H}(n, k)$ is a locally finite collection of open subsets of *X* for each *n* and *k*. Therefore $\mathfrak{H}(n)$ is a locally finite open covering of X for each n. Let us put $\mathfrak{A}_n = \{ \operatorname{Int}(\operatorname{St}(F, \mathfrak{F}_n) | F \in \mathfrak{F}_n \}, \quad n = 1, 2, \cdots. \}$

Then by Lemma 2.2 (b), the sequence $\{\mathfrak{A}_n | n=1, 2, \dots\}$ of open coverings of X satisfies Condition (M). Further, since $n \leq \max(n, k)$, it follows that each locally finite open covering $\mathfrak{S}(n)$ of X refines \mathfrak{A}_n . Since X is a normal space, any locally finite open covering of X is a normal covering (cf. [4]), and hence each \mathfrak{A}_n is a normal open covering of X. Therefore for each n there exists a normal sequence

 $\mathfrak{A}_n > \mathfrak{A}_{n1} > \mathfrak{A}_{n2} > \mathfrak{K} \cdots > \mathfrak{A}_{ni} > \mathfrak{K} > \cdots$

of open coverings of X. Let us put

 $\mathfrak{V}_1 = \mathfrak{A}_1, \quad \mathfrak{V}_i = \mathfrak{A}_i \cap \mathfrak{A}_{1,i-1} \cap \cdots \cap \mathfrak{A}_{i-1,1}, \quad i=2,3,\cdots$. Then $\{\mathfrak{V}_i | i=1,2,\cdots\}$ is a normal sequence of open coverings of X satisfying Condition (M). Hence X is an M-space. Thus we complete the proof of Theorem 2.1.

3. Let X and Y be topological spaces. A map $f: X \to Y$ is called a quasi-perfect map if it is a continuous surjective map such that $f^{-1}(y)$ is countably compact for each point y of Y (cf. [3]). In [1], we proved that, if $f: X \to Y$ is a quasi-perfect map and if X is an M^* -space, then Y is also an M^* -space. Combining this result with our main theorem, we can obtain the following

Theorem 3.1 (cf. [1, Theorem 1.1 in II], [3, Theorem 2.2]). Let $f: X \rightarrow Y$ be a quasi-perfect map. If X is an M-space and if either X or Y is normal, then Y is an M-space.

References

- [1] T. Ishii: On closed mappings and M-spaces. I, II. Proc. Japan Acad., 43, 752-756, 757-761 (1967).
- [2] K. Morita: Products of normal spaces with metric spaces. Math. Ann., 154, 365-382 (1964).
- [3] —: Some properties of *M*-spaces. Proc. Japan Acad., 43, 869-872 (1967).
- [4] A. H. Stone: Paracompactness and product spaces. Bull. Amer. Math. Soc., 54, 977-982 (1948).