232. On M. and M*-Spaces

By Tadashi Ishif
Utsunomiya University
(Comm. by Kinjirô Kunugi, m. J. A., Dec. 12, 1968)

1. In [2], K. Morita has introduced the notion of M-spaces. A topological space X is an M-space if there exists a normal sequence $\left\{\mathfrak{H}_{i} \mid i=1,2, \cdots\right\}$ of open coverings of X satisfying the condition (M) below :
(M) $\left\{\begin{array}{l}\text { If }\left\{K_{i}\right\} \text { is a sequence of non-empty subsets of } X \text { such that } \\ K_{i+1} \subset K_{i}, K_{i} \subset \operatorname{St}\left(x_{0}, \mathfrak{H}_{i}\right) \text { for each } i \text { and for some fixed point } x_{0}\end{array}\right.$ of X, then $\bar{K}_{i} \neq \phi$.
On the other hand, in [1], we introduced the notion of M^{*}-spaces. A topological space X is an M^{*}-space if there exists a sequence $\left\{\mathscr{\mho}_{i} \mid i\right.$ $=1,2, \cdots\}$ of locally finite closed coverings of X satisfying Condition (M), where we may assume without loss of generality that \mathfrak{F}_{i+1} is a refinement of $\mathscr{\gamma}_{i}$ for each i. As for the relations between M - and M^{*} spaces, the following results are proved by K. Morita [3].
(1) There exists an M^{*}-space which is locally compact Hausdorff but is not an M-space.
(2) A collectionwise normal space is an M-space if and only if it is an M^{*}-space.
The first result is a direct consequence of the following (cf. [3]) : There is a perfect map $f: X \rightarrow Y$ such that X is an M-space but Y is not, and such that X, Y are locally compact Hausdorff spaces. In fact, the space Y is an M^{*}-space as the image under a perfect map f of an M^{*}-space X by [1, Theorem 2.3 in I]. ${ }^{1)}$ However, it seems to be unknown whether a normal M^{*}-space is an M-space or not. The purpose of this paper is to give an affirmative answer for this problem.
2. We shall prove the following main theorem.

Theorem 2.1. A normal space X is an M-space if and only if it is an M^{*}-space.

Before proving Theorem 2.1, we mention a fundamental lemma, which is essentially due to K. Morita [3].

Lemma 2.2. Let X be an M^{*}-space with a sequence $\left\{\mathscr{\mathscr { F }}_{i}\right\}$ of locally finite closed coverings of X satisfying Condition (M), where \widetilde{F}_{i+1} is a refinement of \mathfrak{F}_{i} for each i. Then the following statements are valid.
(a) If $\left\{K_{i}\right\}$ is a sequence of non-empty subsets of X such that

[^0]$K_{i+1} \subset K_{i}, K_{i} \subset \operatorname{St}^{k}\left(x_{0}, \mathscr{F}_{i}\right), i=1,2, \cdots$, for some fixed positive integer k and for some fixed point x_{0} of X, then $\cap \bar{K}_{i} \neq \phi$, where $\operatorname{St}^{k}\left(x_{0}, \widetilde{\mathfrak{F}}_{i}\right)$ denotes the k-times iterated star of a point x_{0} in each covering \mathfrak{F}_{i}.
(b) Let $\mathfrak{W}_{i}=\left\{\operatorname{St}\left(F, \widetilde{\mho}_{i}\right) \mid F \in \mathfrak{Y}_{i}\right\}$ for each i. Then the sequence $\left\{\mathfrak{B}_{i}\right\}$ of the coverings of X satisfies Condition (M).

Proof of Theorem 2.1. Since any M-space is clearly an M^{*} space, we shall prove only that a normal M^{*}-space X is an M-space. Let $\left\{\mathscr{\mho}_{i} \mid i=1,2, \cdots\right\}$ be a sequence of locally finite closed coverings of X satisfying Condition (M), where we may assume that \tilde{F}_{i+1} is a refinement of \mathfrak{F}_{i} for each i. If we put $C(x)=\cap\left\{\operatorname{St}^{2}\left(x, \mathscr{Y}_{i}\right) \mid i=1,2,, \cdots\right\}$ for any point x of X, then the set $C(x)$ is countably compact by Lemma 2.2 (a). As is easily shown, if \mathfrak{F} is any locally finite collection of the subsets of X, then a countably compact subset C of X intersects with only finite members of \mathfrak{F}. Hence the set $C(x)$ intersects with only finite members of each \mathfrak{F}_{n}. Let us put

$$
U_{n}(x)=X-\cup\left\{F \mid F \cap C(x)=\phi, \quad F \in \mathfrak{F}_{n}\right\}, \quad n=1,2, \cdots
$$

for any point x of X. Then each $U_{n}(x)$ is open in X, and $C(x) \subset U_{n}(x)$. Therefore it follows from Lemma 2.2 (a) that for each n there exists some positive integer $k(n)$ such that $\operatorname{St}^{2}\left(x, \mathscr{V}_{k(n)}\right) \subset U_{n}(x)$. Since $\operatorname{St}^{2}\left(x, \mathscr{\mho}_{k(n)}\right)$ intersects with only finite members of $\mathscr{F}_{n}, \operatorname{St}\left(x, \mathscr{\mho}_{k(n)}\right)$ intersects with only finite members of $\left\{\operatorname{St}\left(F, \mathscr{F}_{k(n)}\right) \mid F \in \mathfrak{Y}_{n}\right\}$. Now for each n and k, let us denote by $G_{n k}$ the subset of X which consists of points x of X such that $\operatorname{St}\left(x, \mathfrak{\gamma}_{k}\right)$ intersects with only finite members of $\left\{\operatorname{St}\left(F, \mathscr{\mathscr { F }}_{k}\right) \mid F \in \mathscr{F}_{n}\right\}$. Then each $G_{n k}$ is an open subset of X. Indeed, let $x \in G_{n k}$, and put

$$
H_{k}(x)=X-\cup\left\{F \mid x \notin F, F \in \mathfrak{Y}_{k}\right\} .
$$

Then $H_{k}(x)$ is open in X, and if $y \in H_{k}(x)$, then $\operatorname{St}\left(y, \mathscr{\mho}_{k}\right) \subset \operatorname{St}\left(x, \mathfrak{\mho}_{k}\right)$, which implies that $y \in G_{n k}$. Hence each $G_{n k}$ is open in X. Further it follows easily that $G_{n k} \subset G_{n, k+1}, k=1,2, \cdots$, and that $\left\{G_{n k} \mid k\right.$ $=1,2, \cdots\}$ is a covering of X for each n. On the other hand, a normal M^{*}-space X is countably paracompact by [1, Theorem 2.7 in I]. Therefore for each n there exists a locally finite open refinement $\left\{H_{n k} \mid k\right.$ $=1,2, \cdots\}$ of a countable open covering $\left\{G_{n k} \mid k=1,2, \cdots\right\}$ of X such that $\bar{H}_{n k} \subset G_{n k}, k=1,2, \ldots$. Let us put

$$
\begin{gathered}
\mathfrak{S}(n, k)=\left\{H_{n k} \cap \operatorname{Int}\left(\operatorname{St}\left(F, \mathscr{\mathscr { V }}_{\max (n, k)}\right)\right) \mid \boldsymbol{F} \in \mathscr{\mathscr { F }}_{n}\right\}, \\
\mathfrak{S}(n)=\bigcup\left\{\mathfrak{S}_{\mathscr{S}}(n, k) \mid k=1,2, \cdots\right\},
\end{gathered}
$$

for each n and k. Then each $\mathscr{S}_{\mathcal{C}}(n, k)$ is a locally finite collection of open subsets of X. Indeed, let $x \in \bar{H}_{n k}$. Since $\bar{H}_{n k} \subset G_{n, \max (n, k)}, \operatorname{St}\left(x, \mathfrak{F}_{\max (n, k)}\right)$ intersects with only finite members of $\left\{\operatorname{St}\left(F, \mathfrak{F}_{\max (n, k)}\right) \mid F \in \mathfrak{F}_{n}\right\}$, and hence $\operatorname{Int}\left(\operatorname{St}\left(x, \mathfrak{F}_{\max (n, k)}\right)\right)$ intersects with only finite members of $\left\{\operatorname{Int}\left(\operatorname{St}\left(F, \mathscr{F}_{\max (n, k)}\right)\right) \mid F \in \mathscr{F}_{n}\right\}$. This shows that $\mathscr{S}_{\mathrm{C}}(n, k)$ is a locally finite collection of open subsets of X for each n and k. Therefore
$\mathfrak{S}(n)$ is a locally finite open covering of X for each n. Let us put

$$
\mathfrak{V}_{n}=\left\{\operatorname{Int}\left(\operatorname{St}\left(F, \mathscr{\mathscr { S }}_{n}\right) \mid F \in \mathscr{F}_{n}\right\}, \quad n=1,2, \cdots\right.
$$

Then by Lemma 2.2 (b), the sequence $\left\{\mathfrak{U}_{n} \mid n=1,2, \cdots\right\}$ of open coverings of X satisfies Condition (M). Further, since $n \leqq \max (n, k$), it follows that each locally finite open covering $\mathscr{S}_{2}(n)$ of X refines \mathfrak{A}_{n}. Since X is a normal space, any locally finite open covering of X is a normal covering (cf. [4]), and hence each \mathfrak{A}_{n} is a normal open covering of X. Therefore for each n there exists a normal sequence

$$
\mathfrak{U}_{n}>* \mathfrak{Y}_{n 1}>* \mathfrak{A}_{n 2}>* \ldots>* \mathfrak{A}_{n i}>*>\ldots
$$

of open coverings of X. Let us put

$$
\mathfrak{B}_{1}=\mathfrak{A}_{1}, \quad \mathfrak{B}_{i}=\mathfrak{A}_{i} \cap \mathfrak{A}_{1, i-1} \cap \cdots \cap \mathfrak{U}_{i-1,1}, \quad i=2,3, \cdots .
$$

Then $\left\{\mathfrak{B}_{i} \mid i=1,2, \cdots\right\}$ is a normal sequence of open coverings of X satisfying Condition (M). Hence X is an M-space. Thus we complete the proof of Theorem 2.1.
3. Let X and Y be topological spaces. A map $f: X \rightarrow Y$ is called a quasi-perfect map if it is a continuous surjective map such that $f^{-1}(y)$ is countably compact for each point y of Y (cf. [3]). In [1], we proved that, if $f: X \rightarrow Y$ is a quasi-perfect map and if X is an M^{*}-space, then Y is also an M^{*}-space. Combining this result with our main theorem, we can obtain the following

Theorem 3.1 (cf. [1, Theorem 1.1 in II], [3, Theorem 2.2]). Let $f: X \rightarrow Y$ be a quasi-perfect map. If X is an M-space and if either X or Y is normal, then Y is an M-space.

References

[1] T. Ishii: On closed mappings and M-spaces. I, II. Proc. Japan Acad., 43, 752-756, 757-761 (1967).
[2] K. Morita: Products of normal spaces with metric spaces. Math. Ann., 154, 365-382 (1964).
[3] ——: Some properties of M-spaces. Proc. Japan Acad., 43, 869-872 (1967).
[4] A. H. Stone: Paracompactness and product spaces. Bull. Amer. Math. Soc., 54, 977-982 (1948).

[^0]: 1) In [1, Theorem 2.3 in I], the assumption that X is T_{1} is unnecessary.
