226. Relations between Unitary ρ-Dilatations and Two Norms. II

By Takayuki Furuta
Faculty of Engineering, Ibaraki University
(Comm. by Kinjirô Kunugı, m. J. A., Dec. 12, 1968)

1. Following [1] [4] [7] an operator T on a Hilbert space H possesses a unitary ρ-dilatation if there exist a Hilbert space K containing H as a subspace, a positive constant ρ and a unitary operator U on K satisfying the following representation
(1)

$$
T^{n}=\rho \cdot P U^{n} \quad(n=1,2, \cdots \cdot)
$$

where P is the orthogonal projection of K on H. Put \mathcal{C}_{ρ} the class of all operators on H having a unitary ρ-dilatation on a suitable enlarged space K. These classes $\mathcal{C}_{\rho}(\rho \geqq 0)$ were introduced by $S z$-Nagy and C. Foias [7]. They have shown a characterization and the monotonity of \mathcal{C}_{ρ}. In the previous paper [4] we obtained the condition for the operator norm $\|T\|$ and the numerical radius $\|T\|_{N}$ satisfied by T in \mathcal{C}_{ρ} ($\rho \leqq 2$),
that is if $T \in \mathcal{C}_{\rho}(0 \leqq \rho \leqq 1)$, then

$$
1 / 2\|T\| \leqq\|T\|_{N} \leqq \begin{cases}\|T\| & \left(0 \leqq\|T\| \leqq \frac{\rho}{2-\rho}\right) \\ \frac{\rho}{2-\rho} & \left(\frac{\rho}{2-\rho} \leqq\|T\| \leqq \rho\right)\end{cases}
$$

and if $T \in \mathcal{C}_{\rho}(1 \leqq \rho \leqq 2)$, then

$$
1 / 2\|T\| \leqq\|T\|_{N} \leqq\left\{\begin{array}{cc}
\|T\| & (0 \leqq\|T\| \leqq 1) \\
1 & (1 \leqq\|T\| \leqq \rho)
\end{array}\right.
$$

In this paper we continue the investigation for classes $\mathcal{C}_{\rho}(\rho \geqq 2)$. We give a simple necessary condition for $T \in \mathcal{C}_{\rho}(\rho \geqq 2)$ related to both $\|T\|$ and $\|T\|_{N}$ and its graphic representation.
2. The following theorems are known and we cite for the sake of convenience ([2] [4] [7]).

Theorem A. An operator T in H belongs to the class \mathcal{C}_{ρ} if and only if it satisfies the following conditions
$\left\{\left(\mathrm{I}_{\rho}\right) \quad\|h\|^{2}-2\left(1-\frac{1}{\rho}\right) \operatorname{Re}(z T h, h)+\left(1-\frac{2}{\rho}\right)\|z T h\|^{2} \geqq 0\right.$ for h in H and $|z| \leqq 1$,
(II) the spectrum of T lies in the closed unit disk.
(ii) If $\rho \leqq 2$, then the condition (I_{ρ}) implies (II).

Using the notion of shell, Ch. Davis [2] has proved the following proposition.

Proposition. If $\rho \geqq 2$, then the condition (I_{ρ}) also implies (II).
This proposition was implicitly contained in [7]. Thus we have the following theorem.

Theorem A'. An operator T belongs to \mathcal{C}_{ρ} if and only if it satisfies the condition $\left(I_{p}\right)$.

Theorem B. \mathcal{C}_{ρ} is non-decreasing with respect to the index ρ in the sense that

$$
\mathcal{C}_{\rho_{1}} \subset \mathcal{C}_{\rho_{2}} \text { if } 0<\rho_{1} \leqq \rho_{2} .
$$

The following theorems were proved in [4].
Theorem C. (i) If $T \in \mathcal{C}_{\rho}$ for $0 \leqq \rho \leqq 1$, then $\|T\|_{N} \leqq \frac{\rho}{2-\rho}$.
(ii) If $T \in \mathcal{C}_{\rho}$ for $1 \leqq \rho \leqq 2$, then $\|T\|_{N} \leqq 1$.
(iii) If $(2-\rho)\|T\|^{2}+2(1-\rho)\|T\|_{N}-\rho \leqq 0$ for $0 \leqq \rho \leqq 1$, then $T \in \mathcal{C}_{\rho}$.
(iv) If $(2-\rho)\|T\|^{2}+2(\rho-1)\|T\|_{N}-\rho \leqq 0$ for $1 \leqq \rho \leqq 2$, then $T \in \mathcal{C}_{\rho}$.

Theorem D. (i) If $T \in \mathcal{C}_{\rho}$, there exists k in $[1 / 2,1]$ such that $(2-\rho)\|T\|^{2} k^{2}+2(1-\rho)\|T\|_{N}-\rho \leqq 0$ for $0 \leqq \rho \leqq 1$.
(ii) If $T \in \mathcal{C}_{\rho}$, there exists k in $[1 / 2,1]$ such that

$$
(2-\rho)\|T\|^{2} k^{2}+2(\rho-1)\|T\|_{N}-\rho \leqq 0 \quad \text { for } 1 \leqq \rho \leqq 2
$$

3. For $2 \leqq \rho$, the condition $\left(I_{\rho}\right)$ is replaced by

$$
(\rho-2)\|z T h\|^{2}-2(\rho-1)|(T h, h)| r \cos \psi+\rho\|h\|^{2} \geqq 0 \text { for } h \text { in } H,|z| \leqq 1
$$

that is
$\left(I_{\rho}^{\prime}\right) \quad(\rho-2)\|T h\|^{2} r^{2}-2(\rho-1)|(T h, h)| r \cos \psi+\rho \geqq 0$
for every unit vector h in H, where $z=r e^{i \theta}, 0 \leqq r \leqq 1, \psi=\varphi+\theta$ and φ is the argument of ($T h, h$).
Since the left hand side of (I_{p}) is positive if it is so when $\cos \psi=1$, ($\left.I_{p}^{\prime}\right)$ is equivalent to
$\left(I_{\rho}^{\prime \prime}\right) \quad(\rho-2)\|T h\|^{2} r^{2}-2(\rho-1)|(T h, h)| r+\rho \geqq 0$
for every unit vector h in H and for $0 \leqq r \leqq 1$.
Lemma. If $T \in \mathcal{C}_{\rho}$ for $\rho \geqq 2$, there exists k in $[1 / 2,1]$ such that

$$
(\rho-2)\|T\|^{2} k^{2} r^{2}-2(\rho-1)\|T\|_{N} r+\rho \geqq 0 \quad \text { for } 0 \leqq r \leqq 1
$$

Proof. Let $\left\{h_{n}\right\}$ be a sequence of unit vectors which $\left|\left(T h_{n}, h_{n}\right)\right|$ converges to $\|T\|_{N}$. Then

$$
\left|\left(T h_{n}, h_{n}\right)\right| \leqq\left\|T h_{n}\right\| \leqq\|T\|,
$$

hence

$$
\|T\|_{N} \leqq \sup \left\|T h_{n}\right\| \leqq\|T\| .
$$

Thus we get

$$
\frac{1}{2} \leqq \frac{\|T\|_{N}}{\|T\|} \leqq \frac{\sup \left\|T h_{n}\right\|}{\|T\|} \leqq
$$

Put $k=\frac{\sup \left\|T h_{n}\right\|}{\|T\|}$, then $1 / 2 \leqq k \leqq 1$ and $\sup \left\|T h_{n}\right\|=k\|T\| . \quad$ By $\left(I_{\rho}^{\prime \prime}\right)$ we have

$$
\begin{gathered}
(\rho-2)\left\|T h_{n}\right\|^{2} r^{2}-2(\rho-1)\left|\left(T h_{n}, h_{n}\right)\right| r+\rho \geqq 0 \text { for } 0 \leqq r \leqq 1, \\
(\rho-2)\|T\|^{2} k^{2} r^{2}-2(\rho-1)\|T\|_{N} \quad r+\rho \geqq 0 \quad \text { for } 0 \leqq r \leqq 1 .
\end{gathered}
$$

By Theorem A^{\prime}, the proof is complete.
Theorem.
(i) If $T \in \mathcal{C}_{\rho}$ for $2 \leqq \rho \leqq \sqrt{2}+1$, then

$$
1 / 2\|T\| \leqq\|T\|_{N} \leqq\left\{\begin{array}{l}
\|T\|(0 \leqq\|T\| \leqq 1) \\
\frac{\rho-2}{2(\rho-1)}\|T\|^{2}+\frac{\rho}{2(\rho-1)}(1 \leqq\|T\| \leqq \rho) .
\end{array}\right.
$$

(ii) If $T \in \mathcal{C}_{\rho}$ for $\rho \geqq \sqrt{2}+1$, then

$$
1 / 2\|T\| \leqq\|T\|_{N} \leqq\left\{\begin{array}{l}
\|T\|(0 \leqq\|T\| \leqq 1) \\
\frac{\rho-2}{2(\rho-1)}\|T\|^{2}+\frac{\rho}{2(\rho-1)} \\
\frac{\sqrt{\rho(\rho-2)}}{\rho-1}\|T\|\left(\sqrt{\frac{\rho}{\rho-2}} \leqq\|T\| \leqq \rho\right) .
\end{array}\right.
$$

Proof. We put

$$
\mathscr{F}_{\rho, k, r}\left(\|T\|,\|T\|_{N}\right) \equiv(\rho-2)\|T\|^{2} k^{2} r^{2}-2(\rho-1)\|T\|_{N} r+\rho
$$

and define the following domains in the $\left(\|T\|,\|T\|_{N}\right)$ plane

$$
\begin{gathered}
\mathscr{D}_{\rho, k, r}\left(\|T\|,\|T\|_{N}\right) \equiv\left\{\left(\|T\|,\|T\|_{N}\right) ; \mathscr{F}_{\rho, k, r}\left(\|T\|,\|T\|_{N}\right) \geqq 0\right. \\
\text { for some } r \in[0,1]\} \\
\mathscr{D}_{\rho, k}\left(\|T\|,\|T\|_{N}\right) \equiv \bigcap_{0 \leq r \leq 1} \mathscr{D}_{\rho, k, r}\left(\|T\|,\|T\|_{N}\right) \\
\mathscr{D}_{\rho}\left(\|T\|,\|T\|_{N}\right) \equiv \bigcup_{\frac{1}{2} \leq k \leq 1} \mathscr{D}_{\rho, k}\left(\|T\|,\|T\|_{N}\right) .
\end{gathered}
$$

Then by lemma the domain $\mathscr{D}_{\rho}\left(\|T\|,\|T\|_{N}\right)$ indicates the necessary condition for $T \in \mathcal{C}_{\rho}$ in the sense that if $T \in \mathcal{C}_{\rho}$, then $\left(\|T\|,\|T\|_{N}\right) \in \mathscr{D}_{\rho}(\|T\|$, $\left.\|T\|_{N}\right)$.

Now let us consider the envelope of $\mathscr{F}_{\rho, k, r}\left(\|T\|,\|T\|_{N}\right)=0$ for all r and fixed ρ, k as follows. We eliminate the parameter r from the simultaneous equations

$$
\left\{\begin{array}{l}
\mathscr{F}_{\rho, k, r}\left(\|T\|,\|T\|_{N}\right)=0 \\
\frac{\partial \mathscr{F}_{\rho, k, r}\left(\|T\|,\|T\|_{N}\right)}{\partial r}=0
\end{array}\right.
$$

then we get the line

$$
\|T\|_{N}=\frac{k \sqrt{\rho(\rho-2)}}{\rho-1}\|T\|
$$

as the envelope.
We define $\mathscr{D}_{E(\rho, k)}\left(\|T\|,\|T\|_{N}\right)$ and $D_{\rho, k, 1}^{L}\left(\|T\|,\|T\|_{N}\right)$ by

$$
\begin{aligned}
& \mathscr{D}_{E(\rho, k)}\left(\|T\|,\|T\|_{N}\right) \equiv\left\{\left(\|T\|,\|T\|_{N}\right) ;\|T\|_{N} \leqq \frac{k \sqrt{\rho(\rho-2)}}{\rho-1}\|T\|\right\} \\
& \mathscr{D}_{\rho, k, 1}^{L}\left(\|T\|,\|T\|_{N}\right) \equiv\left\{\mathscr{D}_{\rho, k, 1}\left(\|T\|,\|T\|_{N}\right) ;\|T\| \leqq \frac{1}{k} \sqrt{\frac{\rho}{\rho-2}}\right\}
\end{aligned}
$$

Since the curve $\mathscr{F}_{\rho, k, 1}\left(\|T\|,\|T\|_{N}\right)$ contacts the envelope of $\mathscr{F}_{\rho, k, r}(\|T\|$, $\left.\|T\|_{N}\right)=0$ at $E^{\prime}\left(\frac{1}{k} \sqrt{\frac{\rho}{\rho-2}}, \frac{\rho}{\rho-1}\right)$, we have

$$
\mathscr{D}_{\rho, k}\left(\|T\|,\|T\|_{N}\right)=\mathscr{D}_{\rho, k, 1}^{L}\left(\|T\|,\|T\|_{N}\right) \cup \mathscr{D}_{E(\rho, k)}\left(\|T\|,\|T\|_{N}\right) .
$$

The slope of the envelope of $\mathscr{F}_{\rho, k, r}\left(\|T\|,\|T\|_{N}\right)=0$ is less than that of $\mathscr{F}_{\rho, 1, r}\left(\|T\|,\|T\|_{N}\right)=0$ and the curve $\mathscr{F}_{\rho, k, 1}\left(\|T\|,\|T\|_{N}\right)=0$ lies lower than the curve $\mathscr{F}_{\rho, 1,1}\left(\|T\|,\|T\|_{N}\right)=0$. Hence we get

$$
\mathscr{D}_{\rho, k}\left(\|T\|,\|T\|_{N}\right) \subset \mathscr{D}_{\rho, 1}\left(\|T\|,\|T\|_{N}\right) \quad \text { for all } k \in[1 / 2,1]
$$

consequently

$$
\mathscr{D}_{\rho}\left(\|T\|,\|T\|_{N}\right) \equiv \bigcup_{\frac{1}{2} \leq k \leq 1} \mathscr{D}_{\rho, k}\left(\|T\|,\|T\|_{N}\right)=\mathscr{D}_{\rho, 1}\left(\|T\|,\|T\|_{N}\right) .
$$

Hence if $\sqrt{\frac{\rho}{\rho-2}} \geqq \rho$ i.e., $2 \leqq \rho \leqq \sqrt{2}+1, \mathscr{D}_{\rho}\left(\|T\|,\|T\|_{N}\right)$ is enclosed by the three lines $\|T\|_{N}=\|T\|,\|T\|_{N}=1 / 2\|T\|,\|T\|=\rho$ and the curve $\mathscr{F}_{\rho, 1,1}(\|T\|$, $\left.\|T\|_{N}\right)=0$ (see Fig. 2), if $\sqrt{\frac{\rho}{\rho-2}} \leqq \rho$, i.e., $\rho \geqq \sqrt{2}+1, \mathscr{D}_{\rho}\left(\|T\|,\|T\|_{N}\right)$ is enclosed by the four lines $\|T\|_{N}=\|T\|,\|T\|_{N}=1 / 2\|T\|,\|T\|=\rho$, the envelope $\|T\|_{N}=\frac{\sqrt{\rho(\rho-2)}}{\rho-1}\|T\|$, and the curve $\mathscr{F}_{\rho, 1,1}\left(\|T\|,\|T\|_{N}\right)=0$ (see Fig. 1).

In Fig. 1 the curve $A E$ ($A D$ in Fig. 2) and the envelope line $E D$ ($D E$ in Fig. 2) are respectively given by

$$
\begin{aligned}
& f_{1}(\rho) ;\|T\|_{N}=\frac{\rho-2}{2(\rho-1)}\|T\|^{2}+\frac{\rho}{2(\rho-1)} \\
& f_{E}(\rho) ;\|T\|_{N}=\frac{\sqrt{\rho(\rho-2)}}{\rho-1}\|T\| .
\end{aligned}
$$

$f_{1}(\rho)$ contacts $f_{E}(\rho)$ at $E\left(\sqrt{\frac{\rho}{\rho-2}}, \frac{\rho}{\rho-1}\right)$. Moreover when $\rho \rightarrow \infty$, $\frac{\rho-2}{2(\rho-1)}$ gradually tends to $1 / 2$ and the slope of $f_{E}(\rho), \frac{\sqrt{\rho(\rho-2)}}{\rho-1}$ gradually tends to 1 . Consequently the point E closes to the point A as $\rho \rightarrow \infty$ and hence the line $O A$ may be considered as the envelope for $\rho=\infty$. As well known, for a every bounded operator T the following inequality holds $1 / 2\|T\| \leqq\|T\|_{N} \leqq\|T\|$. Thus we may put
$\mathcal{C}_{\infty}=$ (the set of all bounded operators)
and
$\mathscr{D}_{\infty}=$ the whole sector $\left\{\left(\|T\|,\|T\|_{N}\right) ; 1 / 2\|T\| \leqq\|T\|_{N} \leqq\|T\|\right\}$.
When $\rho \rightarrow 2$, the slope $\frac{\rho-2}{2(\rho-1)}$ of $f_{1}(\rho)$ and the intercept $\frac{\rho}{2(\rho-1)}$ of $\|T\|_{N}$ gradually close to 0 and 1 respectively, that is, the points D and C gradually close to the same point B.

As stated in the previous paper [4] the triangular domain $O A F$ and $O A B$ indicate the necessary and sufficient conditions for T to belong to \mathcal{C}_{1} and \mathcal{C}_{2} respectively. The line $O A$ indicates the degenerated domain which gives the necessary and sufficient condition for a normaloid* operator T to belong to $\mathcal{C}_{\rho}(0 \leqq \rho \leqq 1)$ ([4]).

[^0]

Fig. $1 \quad \rho \geq \sqrt{2}+1$

References

[1] C. Berger: On the numerical range of an operator (to appear).
[2] Ch. Davis: The shell of a Hilbert-space operator. Acta Sci. Math., 29, 69-86 (1968).
[3] T. Furuta: A generalization of Durszt's theorem on unitary ρ-dilatations. Proc. Japan Acad., 43, 594-598 (1967).
[4] -: Relations between unitary ρ-dilatations and two norms. Proc. Japan Acad., 44, 16-20 (1968).
[5] P. R. Halmos: Hilbert Space Problem Book. Van Nostrand, The University Series in Higher Mathematics (1967).
[6] B. Sz-Nagy: Sur les contractions de l'espace de Hilbert. Acta Sci. Math., 15, 87-92 (1953).
[7] B. Sz-Nagy and C. Foias: On certain classes of power bounded operators in Hilbert space. Acta Sci. Math., 17-25 (1966).

[^0]: *) An operator T is said to be normaloid if $\|T\|=\|T\|_{N}$ or equivalently $\|T\|$ equals to the spectral radius of T ([5]).

