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1o Following [1] [4] [7] an operator T on a Hilbert space H pos-
sesses a unitary p-dilatation if there exist a Hilbert space K containing
H as a subspace, a positive constant p and a unitary operator U on K
satisfying the following representation
(1) T=p.PU (n--1,2,
where P is the orthogonal projection of K on H. Put C, the class of
all operators on H having a unitary p-dilatation on a suitable enlarged
space K. These classes Cp (p >__0) were introduced by Sz-Nagy and C.
Foias [7]. They have shown a characterization and the monotonity
of C,. In the previous paper [4] we obtained the condition or the
operator norm HTII and the numerical radius IITII satisfied by T in C
(p<__2),
that is if T e Cp (0 <= p <= 1), then

1/21Tll < IT <t
2--p

and if T e Cp (1__< p =< 2), then

1/2 --t 1 (I__<IT[I<__).

9.--

._p-

In this paper we continue the investigation for classes C, (p>=2).
We give a simple necessary condition or T e C (p2) related to both
T and T and its graphic representation.

2. The following theorems are known and we cite or the sake
of convenience ([2] [4] [7]).

Theorem A. An operator T in H belongs to the class C, if and
only if it satisfies the following conditions

l(I) hl--2(1--+)Re(zTh’h)/ (1-) ’’zTh’>=O
(i) for h in H and Izl <=1,

(II) the spectrum of T lies in the closed unit disk.
(ii) if p <_2, then the condition (I) implies (II).
Using the notion of shell, Ch, Davis [2] has proved the following prop-
osition.
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Proposition, If p_>2, then the condition (I) also implies (II).
This proposition was implicitly contained in [7]. Thus we have the
following theorem.

Theorem A’, An operator T belongs to if and only if it satis-

fies the condition (I).
Theorem B, C is non-decreasing with respect to the index p in

the sense that
GG if Op<=p..

The ollowing theorems were proved in [4].

(ii)
(iii)
(iv)

(ii)

Theorem C. ( ) If T e G for 0 <= p <= 1, then T <-_ P---P--.
2-p

If T e C for lp_<2, then

If (2--p)l}T}l+2(1--p)llT]]--pO for 0pl, then T e C,.
If (2-p)[[T[[+2(p-1)[[TI[-pO for 1p2, then T e C.

Theorem D. ( If T e C, there exists k in [1/2, 1] such that
(2--p) [T[[k+2(1--p)[[T[[--pO for 0pG1.

If T e C,, there exists k in [1/2, 1] such that
(2-p)]]T]]k+2(p-1)][T]-pO for lp2.. For 2p, the condition (I,) is replaced by

(p--2)]]zTh]]--2(p--1) (Th, h)] rcos+ p]]h]]0 for h in H, ]z]l
that is

(I’) (p- 2)I[ Th liar-2(p- 1) {(Th, h) Ircos + p >__ 0
or every unit vector h in H, where z=re, 0<=r_<_l, -+0 and is
the argument of (Th, h).
Since the left hand side of (I,) is positive if it is so when cos 4-1, (I’)
is equivalent to
(I’/) (p-2)l]Th}lr-2(p-1)](Th, h)]r+p=O
yor every unit vector h in H and yor 0Gr=<l.

Lemma. If T e for p>=2, there exists k in [1/2,1] such that
(p-2)llTIlkr-2(p-1)llTIlr+ p>=O for 0_rG1.

Proof. Let {h} be a sequence of unit vectors which[(Th, h)[
converges to I[Tll. Then

hence

Thus we get
TIl=Ksup ITh = IT I.

1 < IITII < sup]lTh]l <1.
2-- lIT11 ]]T]]

Put k- supllTh, then 1/2__<k__<1 and suplITh, II--k]ITll.

have
(p-- 2)II Th, II- 2(-) (Th., h.) + >= 0
(p-2)]]Tl]]v-2(p-)llTl] r+ p_>_0

By (F}) we

for 0__<r<__ 1,
for 0r_<l.
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By Theorem A’, the proof is complete.

(ii)

Theorem,

If T e . for 2=< p__< 2 + 1, then

11T (0 <= T <= )
1/2[[T[[_<_ [[T[[v_<_ p-2 [[T[[+ p

2(p-- ) 2(p--)
If T e C for p>_ 2 + l, $hen

1/211TII <=

Proof. We put

]1T (0 __< T __< 1)

2(p-- 1) 2(p-- 1)

p--1 p-2

KK, ,(]l Tll, T N) (p 2) T k"r"-- 2(p -1) T r+ P
and define the following domains in the (lI T ll, T IID plane

for some r e [0, 1]}
.,([[ T [[, T ) ., ,([[ T [[,

0r

.(] T, T ) ,,(T[, T ).

Then by lemma the domain ([T[[, T) indicates the necessary con-
dition for T e C. in the sense that if T e C, then (] T]],
T).

Now let us consider the envelope of ff.,,(]T]], }]T])--0 for all r
and fixed p, k as follows. We eliminate the parameter r from the
simultaneous equations

3,,,(11Tl[, IITI[) =0

then we get the line

p--1
as the envelope.

We define 2(..)(IIT[[. [[TI[) and D...(I[T[[. [[T][) by

p--1, ([ITI[ IIT[[N) ,,,([[TI[ [[TI[N);IIT[[< P
Since the curve ,,(]]T], lIT]IN)contacts the envelope

T ) O at E’ l i P P have
p--2’ p--l ’we
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The slope of the envelope of ffp, l,r(l[ T[[, T[[N)=0 is less than that of
,,(11TII, TII) =0 and the curve , ,(ll TII, TII)=O lies lower than
the curve ,,(IIT[I, IITI[)=0. Hence we get

)p,(IITII, IITIIN)c,I(IITII, IITII) for all k e [1/2, 1]
consequently

(]IT]], I]T[) ,(IT[[, [T]];)=,(]ITI, [T][N).

Hence ifff P _pi.e. 2<p<+1 (I[T[ T ) is enclosed by the

three lines T]]= T], T]]= 1/2] T]], T] p and the curve ff,,(]] T]],

[[T[)=0(seeFig. 2), ifff P <p, ie. p>+l, (]T[, T;) is

enclosed by the four lines [[T[I=][TI[, llT]=I/2[TI, I]T[I=p, the en-

velope [T[I--P(P--2)[IT[, and the curve ff,,(l[Tl, [[TI[)=0 (see Fig.

).
I B. 1 te me (D m . ) m te emeoe

(p-- 1) (p--1)

() -P(P--) .
p-1

(p--1) gradually tends to 1/2 and the slope of (p), p--1 grad-

ually ends to 1. Consequently the oint N closes to the oin A as
p and hence he line OA may be considered as the envelope or
p=. As well known, for a every bounded operator T the following
inequaliV holds 1/TI IITI ITll. hus we may

C=(the set of all bounded oerators)
and

.q):-the whole sector ((IITI[, [ITII) 1/2[[TII [ITI[ I[TI[}.

When p-2, the slope p-2 of f(p) and the intercept P
2(p-- 1) 2(p-- 1)

of IITII gradually close to 0 and 1 respectively, that is, the points D
and C gradually close to the same point B.

As stated in the previous paper [4] the triangular domain OAF
and OAB indicate the necessary and sufficient conditions for T to be-
long to C and C respectively. The line OA indicates the degenerated
domain which gives the necessary and sufficient condition for a norma-
loid* operator T to belong to C (0_<p=<l) ([4]).

*) An operator T is said to be normaloid if T T or equivalently T
equals to the spectral radius of T ([5]).
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Fig.l pi+l
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