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20. On Generalized Integrals. IV

By Shizu NAKANISHI

(Comm. by Kinjir5 KUNUGI, M.J.A., Feb. 12, 1969)

The (E.R.) integral proposed by Prof. K. Kunugi in [1], that is,
the (E.R.) integral in the special sense, which is defined as an exten-
sion of the Lebesgue integral, cannot always integrate the important
functions:for example, the function 1Ix is not (E.R.) integrable in
the special sense in [-1, 1]. Prof. K. Kunugi remarked in [1] that
the method of change of the variable admits the extension of the
range of the integration. We see the precise definition in [2]. In
fact, to do this, he used the function g defined in [, fl], which is non-
negative and Lebesgue-integrable. Let G(x) be the indefinite integral
of g such that G()=a and G(tg)=b. For the function f(t) defined in
[a, b], if the function f(x)=f(G(x))g(x) is (E.R.) integrable in the
special sense in [, ], the function f(t) is said to be (E.R.) integrable
in the extended sense in [a, b], and we understand by the integral of

in the extended sense in [a, b] the number (E.R.) .[:f(G(x))g(x)dx.f(t)

For example, the function lit is (E.R.) integrable in the extended
sense in [-1, 1]. For, if we put g(x)=l/(]x] log(1/Ixl)), and put
G(x)=l/log(1/x) for x>0, G(0)=0, G(x)=-G(-x) for x<0, then
G(x) is the indefinite integral of g(x) such that G(-1/e)--1 and
G(1 / e)- 1, and the function g(x) G(x) 1 / (x log(1 / x I)) is (E.R.) inte-
grable in the special sense in [-l/e, l/e]. Hence, the function 1/t is
(E.R.) integrable in the extended sense in [-1, 1], and the integral is

l/e

(E.R.) 1/(x log(l/]xl))dx-O.
d-1/e

This theory of Prof. K. Kunugi has been extended to the abstract
measure space in [4] by H. Okano. He termed it (E.R.) integral with
respect to a measure , or (E.R. ) integral.

In the preceding papers [3], we obtained the set K of special (E.R.)
integrable functions as a completion of the set of step functions,
and showed that the special (E.R.) integral is a continuous linear
functional on the complete ranked space K. The purpose of this paper
is to define the (E.R.) integral in the extended sense in a similar way.
Let (t) be a positive, Lebesgue-integrable function defined in a finite
or infinite interval [a, b]" and (t) be the indefinite integral of f(t)

1) The infinite interval [a, b] designates one of the intervals
a: x< -t- o a: and < x <: b b -F
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such that (o)--a and ()--b, and denote by - the inverse of .
Denote by /(a, b) the set of all measurable functions on [a, b]. In
order to define the (E.R.) integral in the extended sense, which we
will call (E.R. ?) integral, or (E.R.) integral with respect to , first
we will introduce the ranked space {(a, b), }. When ($)--1,
{?/(a, b), } coincides with the ranked space , or (a, b), intro-
duced in the consideration of the special (E.R.) integral (see III). In
this paper, the set of all (E.R. ) integrable functions is given as the
r-closure of in {(a, b), }, in other words, the (E.R. 2) integrable
function is defined as the r-limit of a sequence {f} of step functions
in {/(a, b), }. Moreover, the integral is defined as the r-continuous
extension of the integrals of step functions. For the consideration of
the (E.R. ) integral, it is useful to consider the mapping

Tf f(q-l(x))(q-l(x))’
from ?t/(a, b) onto /(a, fl). For example, we get the following re-
sults: we have f e {lim fn} in {/(a, b), } if and only if we have

Tf e {lira Tf} in l. Moreover, when f(x) is (E.R. q) integrable in

[a, b] and when {fn} is a sequence of step functions converging to f in
{/(a, b), f}, Tf is (E.R.) integrable in the special sense and the fol-
lowing relation holds"

(E.R. ) bf(t)dt--limn fn(t)dt= lim_. . Tfn(x)dx--(E.R.) . Tf(x)dx.

7. The extended (].R.) integrals. First of all, let us consider
the set of all measurable functions each of which is defined almost
everywhere in a finite or infinite interval [a, b], which we shall denote
by /, or, for the purpose of calling special attention to the interval
[a, b] in which the functions are defined, by /(a, b). We also regard
two functions equal if they differ only in a set of measure zero. Let
?(t) be a positive, Lebesgue-integrable unction in [a, b]. We intro-
duce on the set /a set of neighbourhoods in the ollowing way:

Definition 4. Given a closed subset A of [a, b] and a positive
number e, the neighbourhood of the point f of /, which we shall de-
note by V(A, f) (or simply by V(A, e; f) if there is no ambiguity
about ), is the set of all those measurable functions g(t)which are
expressible as the sums of f(t) and the other functions r(t) with the
following properties"

[a(p)] [r(t)l<(t) for all t e A,

[fl((?)] k [" q(t)dt<e for each k>0,
d{t;

2) The reference number indicates the number of the Note.
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where the function [r(t)](t), the truncation of r(t) by the positive
function k(2(t), is defined by

[r(t)]()_ It(t) if Ir(t)l<_k(t),
kp(t) signr(t) if Ir(t)l k(t).

Then, the neighbourhoods satisfy he axioms (A) and (B) of Haus-
dorff. We consider the set /endowed with such a set of neighbour-

hoods, which we shall denote by {/, } or {(a, b), }. In the case
of ?(t)= 1, {/, } coincides with the ranked space / introduced in
the consideration of the special (E.R.) integral (see III). When (t)
=1, as in III, we simply denote the space {, } by / or /(a, b)
and simply denote the neighbourhood of f by V(A, f). Let x-(t),
t e [a, b], be the indefinite integral of (t) such that q(a)-a and
q(b)--fl,) a, fl:/: +__c. Let us consider the following mapping"

Tf(x)-- f(-(x))(-(x)) (x e [a, fl]),
where q- denotes the inverse of q. Then"

Lemma 15. Tf is a one to one linear mapping o/t(a, b) onto
l(a, fl), and lim fn(t)-- f(t) if and only if lim Tf(x)--Tf(x).

The inverse of T is given in the form" T-f--f(q(t))(t). Let
us denote, by A: or (a, b), the set of all Lebesgue-integrable func-
tions defined on [a, b]. Then, the theorem concerning the change of
variable in the Lebesgue integral asserts that"

Lemma 17. T(_(a, b)))-.(c, fl) and for f e .(a, b), [f(t)dt

Lemma 18. For the neighbourhood V(A, s; f) in {/, },
T(V(A, e f)) is a neighbourhood in, and we have

T(V(A, e; f))-- V((A), e; Tf).
Similarly, we have

T-(V(A, e; f))-V(-(A), e; T-f).
Proof. In general, we have, for the measurable function r(t),

t e [a, b], the following three properties" (i) Ir(t)le(t) for all t e A

if and only if ITr(x)] for all x e q(A). (ii) We have [ (t)dt
d{t;

=mes {x ITr(x) l>k} for k>0. This follows from the theorem con-
cerning the change of variable in the Lebesgue integral. Similarly,

we have (iii)I.[:[r(t)]()dtl- .[".[Tr(x)]dx for k0. Thus, from

(i), (ii), (iii) and Lemma 16, the desired assertion follows.

3) We see that the definition of (E. R. ) integral does not depend on the
particular choice of the indefinite integral (t).

4) In general, when (p) is a mapping defined on R, for a subset E of R,
(E) denotes the set {(p); p e E}.
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By this Lemma, we see that {/, } is a space of depth w0, since
fl/ is a space of depth w0. Hence, the indicator should be w0. For
n-0, 1, 2, ..., a neighbourhood V(A, e; f) is said to be rank n, .if it
satisfies the following condition

[(()] f (t)dte and --2-n.
J

We have the relation [" (t)dt-mes ([a, fl]\(A)), therefore it fol-

lows that"
Lemma 19. V(A, e; f) is a neighbourhood of f of rank n in

{l, p} if and only if T(V(A, e; f)) is a neighbourhood of Tf of rank
n in l.

By III, Proposition 4 and Lemmas 18, 19, we have"
Proposition 12. {/, (?} is a ranked space of depth Wo.
Lemma 20. {V(An, en fn)} is fundamental in {, p} if and only

if {T(V(An, e f))} is fundamental in l.
Thus, we see that"
Proposition 13. The mapping T is an r-isomorphism of {t, }

onto l.
From this, paying attention to Lemma 16 and III, Lemmas 12,

13, we infer the following two Lemmas"
Lemma 21. If {f} is an r-converging sequence in {, q}, then

the limit f(x)=lim fn(X) exists and {lim f} is the set consisting of f
alone.

Lemma 22. If f e {lim fn} and g e {lim g,,} in {l, }, then we

have af+ fig e {lim (afn-- figs)} in {t, } for any pair, e and fl, of
real numbers.

As in the preceding papers, denote by C or (a, b), the set of all
step functions on [a, b].) We now consider the set of such functions
which are defined as r-limits of the sequences {fn} O points of C in
{t/, (f}, that is, the r-closure of ’ in {/, }. We denote the set by
K(F), and call the function belonging to K() (E.R.) integrable func-
tion with respect to , or (E.R. q) integrable function. When (t)-l,
we simply denote, by K, the set K((?), that is, the set of all special
(E.R.) integrable funcions, as in the preceding papers. Then, we
have"

Lemam 23. CI(K())--K().
Proof. Let f CI(K(9)). Then, there is a sequence {fn} Of

5) In the case of an infinite interval [a, b], for example, --co>x>+oo, step
functions are functions having a constant value c in each of finite number of
sub-intervals (finite or infinite) a_l<x<a in a division of -o<x<+oo. a0
=.--ca an-- +c.
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points of K() converging to f, and so there is a fundamental sequence
{Vv(An, Sn f)} in {/, ff} such that V(An, e f) f and $n__2n+.
Since f e K(fp), there are a point f* of C and a neighbourhood

V(A*, * f) of f in , } which has f* as a member and satisfies

the relations" s*<s and (t)dt<s*. hen {V(A, A*),

2e f)} is fundamental in {qfl, } and we have V(A f ( A*), 2e f)

f*, which shows that f e
In particular, we can see, from this Lemma, that CI(.)-----K(p)

in {/, }, because, as it is easily seen, if f is Lebesgue-integrable, it
is also (E.R. ) integrable. Therefore, rom Lemma 17 and Proposi-
tion 13, we have the following proposition"

Proposition 14. T(K())--K.
This result asserts that in order that f should be (E.R. ) inte-

grable in [a, hi, it is necessary and sufficient that Tf should be (E.R.)
integrable in [c,/]. By Lemma 16, Proposition 14 and III, Proposi-
tion 6, we have"

Proposition 15. K(o) is a vector space.
Now, we see, for every (E.R. ) integrable function f, that if

(fn} is a sequence of points of 6’ r-converging to f in {/, f}, then the

of integrals .I.f,(x)dx converges to a finite limit. In fact,sequence

since f e {lim f} in {/, f?}, we have, by Proposition 13, Tf e {lim Tfn}

in . Moreover, since Tfn- and CI(_)=K in /, Tf is (E.R.)

integrable in the special sense and we have lim f Tf(x)dx-(E.R.)

I-.Tf(x)dx. On the other hand, we have, by Lemma 17, |:f(t)dt

=(E.R.):Tfn(x)dx. Consequently, lim:fn(t)dt exists and the value

coincides with the value (E.R.).I: Tf(x)dx. This indicates that the

limit does not depend on the particular choice of the sequence (f} of
points of g’ converging to f. We understand by the integral of the
function f the limit value, and we denote the value by (E.R.

As an immediate consequence o the definition, we have:
Proposition 16. If f is (E.R. fp) integrable, then we have

(E.R. q) :f(t)dt--(E.R.) : Tf(x)dx.

Example 1. If we put (t)--1--e-, e [--1, 1], the function lit
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is (E.R. ) integrable in [-1, 1], and we have (E.R. ) 1/d$
-1

fl/e-(E.R.) 1/(x log(1/I xl)) dx-O.
J-/

L us introduc on K() and th sts o nihbourhoods nd
the ranks induced rom {, } respectively. We denote these ranked
spaces by {K(o), } and {, }. Then, they are ranked subspaces of
{, }. We also see that {C, } is a ranked subspace of {K(), }.
Therefore, rom Lemmas 18, 19, Proposition 14 and III, Lemma 15,
we infer that"

Theorem 5. {K(9), } is a completion of {, P}.
Moreover, from Lemma 16, Propositions 13, 14, 16 and III, Theorem
4, we obtain that"

Theorem 6. The (E.R. ) integral is an r-continuous linear func-
tional on {K(), }.

Since we have CI(.)=K(9), we see, by Theorem 6, that (E.R. )
integral is defined as the r-continuous extension of Lebesgue integral.

From Proposition 14 and II, Theorem 2, we infer that"
Theorem 7. In order that a function f(t) should be (E.R. ) in-

tegrable in [a, b], it is necessary and sufficient that the function should
satisfy the following two conditions:

[A()] lim k [ (t)dt-O,
k-. d{t;lf (t)l>k(t)

lim I’o[f(t)](e) dtexists,[A.()]
Ja

where k runs through the set of all positive integers.

If is the measure defined by (B) =_I,p(t)d$ in [a, b], from H.

Yamagata [5] and Theorem 7, we see that:
Corollary 3. The (E.R. 9) integral coincides with the (E.R. )

integral.
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