20. On Generalized Integrals. IV

By Shizu Nakanishi
(Comm. by Kinjirô Kunugi, m. J. A., Feb. 12, 1969)

The (E.R.) integral proposed by Prof. K. Kunugi in [1], that is, the ($E . R$.) integral in the special sense, which is defined as an extension of the Lebesgue integral, cannot always integrate the important functions: for example, the function $1 / x$ is not ($E . R$.) integrable in the special sense in $[-1,1]$. Prof. K. Kunugi remarked in [1] that the method of change of the variable admits the extension of the range of the integration. We see the precise definition in [2]. In fact, to do this, he used the function g defined in $[\alpha, \beta]$, which is nonnegative and Lebesgue-integrable. Let $G(x)$ be the indefinite integral of g such that $G(\alpha)=a$ and $G(\beta)=b$. For the function $f(t)$ defined in [a, b], if the function $f_{1}(x)=f(G(x)) g(x)$ is (E.R.) integrable in the special sense in $[\alpha, \beta]$, the function $f(t)$ is said to be (E.R.) integrable in the extended sense in $[a, b]$, and we understand by the integral of $f(t)$ in the extended sense in $[a, b]$ the number (E.R.) $\int_{\alpha}^{\beta} f(G(x)) g(x) d x$. For example, the function $1 / t$ is (E.R.) integrable in the extended sense in $[-1,1]$. For, if we put $g(x)=1 /\left(|x| \log (1 /|x|)^{2}\right)$, and put $G(x)=1 / \log (1 / x)$ for $x>0, G(0)=0, G(x)=-G(-x)$ for $x<0$, then $G(x)$ is the indefinite integral of $g(x)$ such that $G(-1 / e)=-1$ and $G(1 / e)=1$, and the function $g(x) / G(x)=1 /(x \log (1 /|x|))$ is (E.R.) integrable in the special sense in $[-1 / e, 1 / e]$. Hence, the function $1 / t$ is ($E . R$.) integrable in the extended sense in $[-1,1]$, and the integral is (E.R.) $\int_{-1 / e}^{1 / e} 1 /(x \log (1 /|x|)) d x=0$.

This theory of Prof. K. Kunugi has been extended to the abstract measure space in [4] by H. Okano. He termed it (E.R.) integral with respect to a measure ν, or (E.R. ν) integral.

In the preceding papers [3], we obtained the set K of special ($E . R$.) integrable functions as a completion of the set \mathcal{E} of step functions, and showed that the special ($E . R$.) integral is a continuous linear functional on the complete ranked space K. The purpose of this paper is to define the ($E . R$.) integral in the extended sense in a similar way. Let $\varphi(t)$ be a positive, Lebesgue-integrable function defined in a finite or infinite interval $[a, b]^{1)}$ and $\Phi(t)$ be the indefinite integral of $\varphi(t)$

[^0]such that $\Phi(\alpha)=a$ and $\Phi(\beta)=b$, and denote by Φ^{-1} the inverse of Φ. Denote by $\mathcal{M}(a, b)$ the set of all measurable functions on $[a, b]$. In order to define the ($E . R$.) integral in the extended sense, which we will call ($E . R . \varphi$) integral, or (E.R.) integral with respect to φ, first we will introduce the ranked space $\{\mathcal{M}(a, b), \varphi\}$. When $\varphi(t)=1$, $\{\mathscr{M}(a, b), \varphi\}$ coincides with the ranked space \mathscr{M}, or $\mathscr{M}(a, b)$, introduced in the consideration of the special (E.R.) integral (see III). ${ }^{2)}$ In this paper, the set of all ($E . R . \varphi$) integrable functions is given as the r-closure of \mathcal{E} in $\{\mathscr{M}(a, b), \varphi\}$, in other words, the (E.R. φ) integrable function is defined as the r-limit of a sequence $\left\{f_{n}\right\}$ of step functions in $\{\mathscr{M}(a, b), \varphi\}$. Moreover, the integral is defined as the r-continuous extension of the integrals of step functions. For the consideration of the ($E . R . \varphi$) integral, it is useful to consider the mapping
$$
T f=f\left(\Phi^{-1}(x)\right)\left(\Phi^{-1}(x)\right)^{\prime}
$$
from $\mathscr{M}(a, b)$ onto $\mathscr{M}(\alpha, \beta)$. For example, we get the following results: we have $f \in\left\{\lim _{n} f_{n}\right\}$ in $\{\mathscr{M}(a, b), \varphi\}$ if and only if we have $T f \in\left\{\lim _{n} T f_{n}\right\}$ in \mathcal{M}. Moreover, when $f(x)$ is (E.R. φ) integrable in $[a, b]$ and when $\left\{f_{n}\right\}$ is a sequence of step functions converging to f in $\{\mathscr{M}(a, b), \varphi\}, T f$ is (E.R.) integrable in the special sense and the following relation holds:
. $\varphi) \int_{a}^{b} f(t) d t=\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(t) d t=\lim _{n \rightarrow \infty} \int_{\alpha}^{\beta} T f_{n}(x) d x=(E . R.) \int_{\alpha}^{\beta} T f(x) d x$.
7. The extended (E.R.) integrals. First of all, let us consider the set of all measurable functions each of which is defined almost everywhere in a finite or infinite interval $[a, b]$, which we shall denote by \mathcal{M}, or, for the purpose of calling special attention to the interval [a, b] in which the functions are defined, by $\mathscr{M}(a, b)$. We also regard two functions equal if they differ only in a set of measure zero. Let $\varphi(t)$ be a positive, Lebesgue-integrable function in $[a, b]$. We introduce on the set \mathscr{M} a set of neighbourhoods in the following way:

Definition 4. Given a closed subset A of $[a, b]$ and a positive number ε, the neighbourhood of the point f of \mathscr{M}, which we shall denote by $V_{\varphi}(A, \varepsilon ; f)$ (or simply by $V(A, \varepsilon ; f)$ if there is no ambiguity about φ), is the set of all those measurable functions $g(t)$ which are expressible as the sums of $f(t)$ and the other functions $r(t)$ with the following properties:

$[\alpha(\varphi)]$	$\|r(t)\|<\varepsilon \varphi(t)$ for all $t \in A$,
$[\beta(\varphi)]$	$k \int_{(t ;\|r(t)\|>k \varphi(t)\}} \varphi(t) d t<\varepsilon$ for each $k>0$,
$[\gamma(\varphi)]$	$\left\|\int_{a}^{b}[r(t)]^{k \varphi(t)} d t\right\|<\varepsilon$ for each $k>0$,

2) The reference number indicates the number of the Note.
where the function $[r(t)]^{k \varphi(t)}$, the truncation of $r(t)$ by the positive function $k \varphi(t)$, is defined by

$$
[r(t)]^{k \varphi(t)}= \begin{cases}r(t) & \text { if }|r(t)| \leq k \varphi(t) \\ k \varphi(t) \operatorname{sign} r(t) & \text { if }|r(t)|>k \varphi(t)\end{cases}
$$

Then, the neighbourhoods satisfy the axioms (A) and (B) of Hausdorff. We consider the set \mathcal{M} endowed with such a set of neighbourhoods, which we shall denote by $\{\mathscr{M}, \varphi\}$ or $\{\mathscr{M}(a, b), \varphi\}$. In the case of $\varphi(t)=1,\{\mathscr{M}, \varphi\}$ coincides with the ranked space \mathscr{M} introduced in the consideration of the special (E.R.) integral (see III). When $\varphi(t)$ $=1$, as in III, we simply denote the space $\{\mathscr{M}, \varphi\}$ by \mathscr{M} or $\mathscr{M}(a, b)$, and simply denote the neighbourhood of f by $V(A, \varepsilon ; f)$. Let $x=\Phi(t)$, $t \in[a, b]$, be the indefinite integral of $\varphi(t)$ such that $\Phi(\alpha)=\alpha$ and $\Phi(b)=\beta,{ }^{3)} \alpha, \beta \neq \pm \infty$. Let us consider the following mapping:

$$
T f(x)=f\left(\Phi^{-1}(x)\right)\left(\Phi^{-1}(x)\right)^{\prime} \quad(x \in[\alpha, \beta])
$$

where Φ^{-1} denotes the inverse of Φ. Then :
Lemma 16. Tf is a one to one linear mapping of $\mathcal{M}(a, b)$ onto $\mathscr{H}(\alpha, \beta)$, and $\lim _{n \rightarrow \infty} f_{n}(t)=f(t)$ if and only if $\lim _{n \rightarrow \infty} T f_{n}(x)=T f(x)$.

The inverse of T is given in the form: $T^{-1} f=f(\Phi(t)) \varphi(t)$. Let us denote, by \mathcal{L} or $\mathcal{L}(a, b)$, the set of all Lebesgue-integrable functions defined on $[a, b]$. Then, the theorem concerning the change of variable in the Lebesgue integral asserts that:

Lemma 17. $T(\mathcal{L}(a, b))^{4}=\mathcal{L}(\alpha, \beta)$ and for $f \in \mathcal{L}(a, b), \int_{a}^{b} f(t) d t$ $=\int_{\alpha}^{\beta} T f(x) d x$.

Lemma 18. For the neighbourhood $V_{\varphi}(A, \varepsilon ; f)$ in $\{\mathcal{M}, \varphi\}$, $T\left(V_{\varphi}(A, \varepsilon ; f)\right)$ is a neighbourhood in \mathcal{M}, and we have

$$
T\left(V_{\varphi}(A, \varepsilon ; f)\right)=V(\Phi(A), \varepsilon ; T f)
$$

Similarly, we have

$$
T^{-1}(V(A, \varepsilon ; f))=V_{\varphi}\left(\Phi^{-1}(A), \varepsilon ; T^{-1} f\right)
$$

Proof. In general, we have, for the measurable function $r(t)$, $t \in[a, b]$, the following three properties: (i) $|r(t)|<\varepsilon \varphi(t)$ for all $t \in A$ if and only if $|\operatorname{Tr}(x)|<\varepsilon$ for all $x \in \Phi(A)$. (ii) We have $\int_{\{t ;|r(t)|>k \varphi(t)\}} \varphi(t) d t$ $=\operatorname{mes}\{x ;|\operatorname{Tr}(x)|>k\}$ for $k>0$. This follows from the theorem concerning the change of variable in the Lebesgue integral. Similarly, we have (iii) $\left|\int_{a}^{b}[r(t)]^{k \varphi(t)} d t\right|=\left|\int_{\alpha}^{\beta}[\operatorname{Tr}(x)]^{k} d x\right|$ for $k>0$. Thus, from (i), (ii), (iii) and Lemma 16, the desired assertion follows.

[^1]By this Lemma, we see that $\{\mathscr{M}, \varphi\}$ is a space of depth ω_{0}, since \mathcal{M} is a space of depth ω_{0}. Hence, the indicator should be ω_{0}. For $n=0,1,2, \cdots$, a neighbourhood $V_{\varphi}(A, \varepsilon ; f)$ is said to be rank n, if it satisfies the following condition

$$
[\delta(\varphi)] \quad \int_{[a, b] \backslash A} \varphi(t) d t<\varepsilon \quad \text { and } \quad \varepsilon=2^{-n} .
$$

We have the relation $\int_{[a, b] \backslash A} \varphi(t) d t=\operatorname{mes}([\alpha, \beta] \backslash \Phi(A))$, therefore it follows that:

Lemma 19. $V_{\varphi}(A, \varepsilon ; f)$ is a neighbourhood of f of rank n in $\{\mathscr{M}, \varphi\}$ if and only if $T\left(V_{\varphi}(A, \varepsilon ; f)\right)$ is a neighbourhood of $T f$ of rank n in \mathscr{M}.

By III, Proposition 4 and Lemmas 18, 19, we have:
Proposition 12. $\{\mathscr{M}, \varphi\}$ is a ranked space of depth ω_{0}.
Lemma 20. $\left\{V_{\varphi}\left(A_{n}, \varepsilon_{n} ; f_{n}\right)\right\}$ is fundamental in $\{\mathcal{M}, \varphi\}$ if and only if $\left\{T\left(V_{\varphi}\left(A_{n}, \varepsilon_{n} ; f_{n}\right)\right)\right\}$ is fundamental in \mathcal{M}.

Thus, we see that:
Proposition 13. The mapping T is an r-isomorphism of $\{\mathcal{M}, \varphi\}$ onto \mathcal{M}.

From this, paying attention to Lemma 16 and III, Lemmas 12, 13, we infer the following two Lemmas:

Lemma 21. If $\left\{f_{n}\right\}$ is an r-converging sequence in $\{\mathscr{M}, \varphi\}$, then the limit $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ exists and $\left\{\lim _{n} f_{n}\right\}$ is the set consisting of f alone.

Lemma 22. If $f \in\left\{\lim _{n} f_{n}\right\}$ and $g \in\left\{\lim _{n} g_{n}\right\}$ in $\{\mathscr{M}, \varphi\}$, then we have $\alpha f+\beta g \in\left\{\lim _{n}\left(\alpha f_{n}+\beta g_{n}\right)\right\}$ in $\{\mathscr{M}, \varphi\}$ for any pair, α and β, of real numbers.

As in the preceding papers, denote by \mathcal{E} or $\mathcal{E}(a, b)$, the set of all step functions on $[a, b] .{ }^{5)}$ We now consider the set of such functions which are defined as r-limits of the sequences $\left\{f_{n}\right\}$ of points of \mathcal{E} in $\{\mathscr{M}, \varphi\}$, that is, the r-closure of \mathcal{E} in $\{\mathscr{M}, \varphi\}$. We denote the set by $\boldsymbol{K}(\varphi)$, and call the function belonging to $\boldsymbol{K}(\varphi)$ (E.R.) integrable function with respect to φ, or ($E . R . \varphi$) integrable function. When $\varphi(t)=1$, we simply denote, by \boldsymbol{K}, the set $\boldsymbol{K}(\varphi)$, that is, the set of all special (E.R.) integrable functions, as in the preceding papers. Then, we have:

Lemam 23. $C l_{r}(\boldsymbol{K}(\varphi))=\boldsymbol{K}(\varphi)$.
Proof. Let $f \in C l_{r}(\boldsymbol{K}(\varphi))$. Then, there is a sequence $\left\{f_{n}\right\}$ of

[^2]points of $\boldsymbol{K}(\varphi)$ converging to f, and so there is a fundamental sequence $\left\{V_{\varphi}\left(A_{n}, \varepsilon_{n} ; f\right)\right\}$ in $\{\mathscr{M}, \varphi\}$ such that $V_{\varphi}\left(A_{n}, \varepsilon_{n} ; f\right) \ni f_{n}$ and $\varepsilon_{n} \geq 2 \varepsilon_{n+1}$. Since $f_{n} \in K(\varphi)$, there are a point f_{n}^{*} of \mathcal{E} and a neighbourhood $V_{\varphi}\left(A_{n}^{*}, \varepsilon_{n}^{*} ; f_{n}\right)$ of f_{n} in $\{\mathscr{M}, \varphi\}$ which has f_{n}^{*} as a member and satisfies the relations: $\varepsilon_{n}^{*} \leq \varepsilon_{n}$ and $\int_{[a, b] \backslash A_{n}^{*}} \varphi(t) d t<\varepsilon_{n}^{*}$. Then $\left\{V_{\varphi}\left(A_{n} \cap\left(\bigcap_{m=n}^{\infty} A_{m}^{*}\right)\right.\right.$, $\left.\left.2^{3} \varepsilon_{n} ; f\right)\right\}$ is fundamental in $\{\mathcal{M}, \varphi\}$ and we have $V_{\varphi}\left(A_{n} \cap\left(\bigcap_{m=n}^{\infty} A_{m}^{*}\right), 2^{3} \varepsilon_{n} ; f\right)$ $\ni f_{n}^{*}$, which shows that $f \in \boldsymbol{K}(\varphi)$.

In particular, we can see, from this Lemma, that $C l_{r}(\mathcal{L})=\boldsymbol{K}(\varphi)$ in $\{\mathscr{M}, \varphi\}$, because, as it is easily seen, if f is Lebesgue-integrable, it is also (E.R. φ) integrable. Therefore, from Lemma 17 and Proposition 13, we have the following proposition :

Proposition 14. $\quad T(K(\varphi))=K$.

This result asserts that in order that f should be (E.R. φ) integrable in $[a, b]$, it is necessary and sufficient that $T f$ should be (E.R.) integrable in $[\alpha, \beta]$. By Lemma 16, Proposition 14 and III, Proposition 6, we have:

Proposition 15. $K(\varphi)$ is a vector space.
Now, we see, for every ($E . R . \varphi$) integrable function f, that if $\left\{f_{n}\right\}$ is a sequence of points of $\mathcal{E} r$-converging to f in $\{\mathscr{M}, \varphi\}$, then the sequence of integrals $\int_{a}^{b} f_{n}(x) d x$ converges to a finite limit. In fact, since $f \in\left\{\lim _{n} f_{n}\right\}$ in $\{\mathscr{M}, \varphi\}$, we have, by Proposition $13, T f \in\left\{\lim _{n} T f_{n}\right\}$ in \mathscr{M}. Moreover, since $T f_{n} \in \mathcal{L}$ and $C l_{r}(\mathcal{L})=K$ in $\mathscr{M}, T f$ is (E.R.) integrable in the special sense and we have $\lim _{n \rightarrow \infty} \int_{\alpha}^{\beta} T f_{n}(x) d x=(E . R$. $\int_{\alpha}^{\beta} T f(x) d x$. On the other hand, we have, by Lemma $17, \int_{a}^{b} f_{n}(t) d t$ $=(E . R.) \int_{\alpha}^{\beta} T f_{n}(x) d x$. Consequently, $\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(t) d t$ exists and the value coincides with the value (E.R.) $\int_{\alpha}^{\beta} T f(x) d x$. This indicates that the limit does not depend on the particular choice of the sequence $\left\{f_{n}\right\}$ of points of \mathcal{E} converging to f. We understand by the integral of the function f the limit value, and we denote the value by ($E . R . \varphi$) $\int_{a}^{b} f(t) d t$.

As an immediate consequence of the definition, we have:
Proposition 16. If f is (E.R. φ) integrable, then we have

$$
(E . R . \varphi) \int_{a}^{b} f(t) d t=(E . R .) \int_{\alpha}^{\beta} T f(x) d x .
$$

Example 1. If we put $\varphi(t)=\frac{1}{t^{2}} e^{-\frac{1}{|t|}}, t \in[-1,1]$, the function $1 / t$
is (E.R. φ) integrable in $[-1,1]$, and we have $(E . R . \varphi) \int_{-1}^{1} 1 / t d t$ $=(E . R.) \int_{-1 / e}^{1 / e} 1 /(x \log (1 /|x|)) d x=0$.

Let us introduce on $K(\varphi)$ and \mathcal{E} the sets of neighbourhoods and the ranks induced from $\{\mathscr{M}, \varphi\}$ respectively. We denote these ranked spaces by $\{\boldsymbol{K}(\varphi), \varphi\}$ and $\{\mathcal{E}, \varphi\}$. Then, they are ranked subspaces of $\{\mathscr{M}, \varphi\}$. We also see that $\{\mathcal{E}, \varphi\}$ is a ranked subspace of $\{\boldsymbol{K}(\varphi), \varphi\}$. Therefore, from Lemmas 18, 19, Proposition 14 and III, Lemma 15, we infer that:

Theorem 5. $\{\boldsymbol{K}(\varphi), \varphi\}$ is a completion of $\{\mathcal{E}, \varphi\}$.
Moreover, from Lemma 16, Propositions 13, 14, 16 and III, Theorem 4, we obtain that:

Theorem 6. The (E.R. φ) integral is an r-continuous linear functional on $\{\boldsymbol{K}(\varphi), \varphi\}$.

Since we have $C l_{r}(\mathcal{L})=K(\varphi)$, we see, by Theorem 6, that $(E . R . \varphi)$ integral is defined as the r-continuous extension of Lebesgue integral.

From Proposition 14 and II, Theorem 2, we infer that:
Theorem 7. In order that a function $f(t)$ should be (E.R. φ) integrable in $[a, b]$, it is necessary and sufficient that the function should satisfy the following two conditions:

$$
\begin{aligned}
& {\left[A_{1}(\varphi)\right] \lim _{k \rightarrow \infty} k \int_{\{t ;|f(t)|>k \varphi(t)\}} \varphi(t) d t=0,} \\
& {\left[A_{2}(\varphi)\right] \lim _{k \rightarrow \infty} \int_{a}^{b}[f(t)]^{k \phi(t)} d t \text { exists },}
\end{aligned}
$$

where k runs through the set of all positive integers.
If ν is the measure defined by $\nu(B)=\int_{B} \varphi(t) d t$ in $[a, b]$, from H. Yamagata [5] and Theorem 7, we see that:

Corollary 3. The (E.R. ע) integral coincides with the (E.R. φ) integral.

References

[1] K. Kunugi: Application de la méthode des espaces rangés à la theorie de l'intégration. I. Proc. Japan Acad., 32, 215-220 (1956).
[2] -: Sur une généralisation de l'intégrale, fundamental and applied aspects of math. (published by Res. Inst. of Applied Electricity, Hokkaido Univ.), 1-30 (1959).
[3] S. Nakanishi: On generalized integrals. I-III. Proc. Japan Acad., 44, 133138, 225-230, 904-909 (1968).
[4] H. Okano: Sur les intégrales (E. R.) et ses applications. Osaka Math. J., 11, 187-212 (1959).
[5] H. Yamagata: Singular cut-off process and Lorentz properties. Proc. Japan Acad., 41, 547-552 (1965).

[^0]: 1) The infinite interval [$a, b]$ designates one of the intervals $-\infty<x<+\infty$, $a \leq x<+\infty(a \neq-\infty)$ and $-\infty<x \leq b \quad(b \neq+\infty)$.
[^1]: 3) We see that the definition of ($E . R . \varphi$) integral does not depend on the particular choice of the indefinite integral $\Phi(t)$.
 4) In general, when $\pi(p)$ is a mapping defined on R, for a subset E of R, $\pi(E)$ denotes the set $\{\pi(p) ; p \in E\}$.
[^2]: 5) In the case of an infinite interval [a,b], for example, $-\infty>x>+\infty$, step functions are functions having a constant value α_{i} in each of finite number of sub-intervals (finite or infinite) $a_{i-1}<x<a_{i}$ in a division of $-\infty<x<+\infty$: a_{0} $=-\infty<a_{1}<\cdots<a_{n}=+\infty$.
