20. On Generalized Integrals. IV

By Shizu NAKANISHI

(Comm. by Kinjirô KUNUGI, M.J.A., Feb. 12, 1969)

The (E.R.) integral proposed by Prof. K. Kunugi in [1], that is, the (E.R.) integral in the special sense, which is defined as an extension of the Lebesgue integral, cannot always integrate the important functions: for example, the function 1/x is not (E.R.) integrable in the special sense in [-1, 1]. Prof. K. Kunugi remarked in [1] that the method of change of the variable admits the extension of the range of the integration. We see the precise definition in [2]. In fact, to do this, he used the function g defined in $[\alpha, \beta]$, which is nonnegative and Lebesgue-integrable. Let G(x) be the indefinite integral of g such that $G(\alpha)=a$ and $G(\beta)=b$. For the function f(t) defined in [a, b], if the function $f_1(x)=f(G(x))g(x)$ is (E.R.) integrable in the special sense in $[\alpha, \beta]$, the function f(t) is said to be (E.R.) integrable in the extended sense in [a, b], and we understand by the integral of

f(t) in the extended sense in [a, b] the number (E.R.) $\int_{-\pi}^{\beta} f(G(x))g(x)dx$.

For example, the function 1/t is (E.R.) integrable in the extended sense in [-1, 1]. For, if we put $g(x)=1/(|x|\log(1/|x|)^2)$, and put $G(x)=1/\log(1/x)$ for x>0, G(0)=0, G(x)=-G(-x) for x<0, then G(x) is the indefinite integral of g(x) such that G(-1/e)=-1 and G(1/e)=1, and the function $g(x)/G(x)=1/(x\log(1/|x|))$ is (E.R.) integrable in the special sense in [-1/e, 1/e]. Hence, the function 1/t is (E.R.) integrable in the extended sense in [-1, 1], and the integral is $(E.R.) \int_{-1/e}^{1/e} 1/(x\log(1/|x|)) dx = 0$.

This theory of Prof. K. Kunugi has been extended to the abstract measure space in [4] by H. Okano. He termed it (E.R.) integral with respect to a measure ν , or $(E.R. \nu)$ integral.

In the preceding papers [3], we obtained the set K of special (E.R.)integrable functions as a completion of the set \mathcal{E} of step functions, and showed that the special (E.R.) integral is a continuous linear functional on the complete ranked space K. The purpose of this paper is to define the (E.R.) integral in the extended sense in a similar way. Let $\varphi(t)$ be a positive, Lebesgue-integrable function defined in a finite or infinite interval $[a, b]^{(1)}$ and $\varphi(t)$ be the indefinite integral of $\varphi(t)$

¹⁾ The infinite interval [a, b] designates one of the intervals $-\infty < x < +\infty$, $a \le x < +\infty$ $(a \ne -\infty)$ and $-\infty < x \le b$ $(b \ne +\infty)$.

such that $\Phi(\alpha) = a$ and $\Phi(\beta) = b$, and denote by Φ^{-1} the inverse of Φ . Denote by $\mathcal{M}(a, b)$ the set of all measurable functions on [a, b]. In order to define the (E.R.) integral in the extended sense, which we will call $(E.R. \varphi)$ integral, or (E.R.) integral with respect to φ , first we will introduce the ranked space $\{\mathcal{M}(a, b), \varphi\}$. When $\varphi(t)=1$, $\{\mathcal{M}(a, b), \varphi\}$ coincides with the ranked space \mathcal{M} , or $\mathcal{M}(a, b)$, introduced in the consideration of the special (E.R.) integral (see III).²⁾ In this paper, the set of all $(E.R. \varphi)$ integrable functions is given as the *r*-closure of \mathcal{E} in $\{\mathcal{M}(a, b), \varphi\}$, in other words, the $(E.R. \varphi)$ integrable functions is $\{\mathcal{M}(a, b), \varphi\}$. Moreover, the integral is defined as the *r*-continuous extension of the integrals of step functions. For the consideration of the $(E.R. \varphi)$ integral, it is useful to consider the mapping

$$Tf = f(\Phi^{-1}(x))(\Phi^{-1}(x))'$$

from $\mathcal{M}(a, b)$ onto $\mathcal{M}(\alpha, \beta)$. For example, we get the following results: we have $f \in \{\lim_{n} f_n\}$ in $\{\mathcal{M}(a, b), \varphi\}$ if and only if we have $Tf \in \{\lim_{n} Tf_n\}$ in \mathcal{M} . Moreover, when f(x) is $(E.R. \varphi)$ integrable in [a, b] and when $\{f_n\}$ is a sequence of step functions converging to f in $\{\mathcal{M}(a, b), \varphi\}$, Tf is (E.R.) integrable in the special sense and the following relation holds:

$$(E.R. \varphi) \int_a^b f(t)dt = \lim_{n \to \infty} \int_a^b f_n(t)dt = \lim_{n \to \infty} \int_a^\beta Tf_n(x)dx = (E.R.) \int_a^\beta Tf(x)dx.$$

7. The extended (E.R.) integrals. First of all, let us consider the set of all measurable functions each of which is defined almost everywhere in a finite or infinite interval [a, b], which we shall denote by \mathcal{M} , or, for the purpose of calling special attention to the interval [a, b] in which the functions are defined, by $\mathcal{M}(a, b)$. We also regard two functions equal if they differ only in a set of measure zero. Let $\varphi(t)$ be a positive, Lebesgue-integrable function in [a, b]. We introduce on the set \mathcal{M} a set of neighbourhoods in the following way:

Definition 4. Given a closed subset A of [a, b] and a positive number ε , the *neighbourhood* of the point f of \mathcal{M} , which we shall denote by $V_{\varphi}(A, \varepsilon; f)$ (or simply by $V(A, \varepsilon; f)$ if there is no ambiguity about φ), is the set of all those measurable functions g(t) which are expressible as the sums of f(t) and the other functions r(t) with the following properties:

²⁾ The reference number indicates the number of the Note.

S. NAKANISHI

where the function $[r(t)]^{k\varphi(t)}$, the truncation of r(t) by the positive function $k\varphi(t)$, is defined by

$$[r(t)]^{k_{\varphi}(t)} = \begin{cases} r(t) & \text{if } |r(t)| \le k_{\varphi}(t), \\ k_{\varphi}(t) \operatorname{sign} r(t) & \text{if } |r(t)| > k_{\varphi}(t). \end{cases}$$

Then, the neighbourhoods satisfy the axioms (A) and (B) of Hausdorff. We consider the set \mathcal{M} endowed with such a set of neighbourhoods, which we shall denote by $\{\mathcal{M}, \varphi\}$ or $\{\mathcal{M}(a, b), \varphi\}$. In the case of $\varphi(t)=1$, $\{\mathcal{M}, \varphi\}$ coincides with the ranked space \mathcal{M} introduced in the consideration of the special (*E.R.*) integral (see III). When $\varphi(t)$ =1, as in III, we simply denote the space $\{\mathcal{M}, \varphi\}$ by \mathcal{M} or $\mathcal{M}(a, b)$, and simply denote the neighbourhood of f by $V(A, \varepsilon; f)$. Let $x=\Phi(t)$, $t \in [a, b]$, be the indefinite integral of $\varphi(t)$ such that $\Phi(a)=\alpha$ and $\Phi(b)=\beta$,³⁾ $\alpha, \beta \neq \pm \infty$. Let us consider the following mapping: $Tf(x)=f(\Phi^{-1}(x))(\Phi^{-1}(x))'$ ($x \in [\alpha, \beta]$),

where Φ^{-1} denotes the inverse of Φ . Then:

Lemma 16. Tf is a one to one linear mapping of $\mathcal{M}(a, b)$ onto $\mathcal{M}(\alpha, \beta)$, and $\lim_{n \to \infty} f_n(t) = f(t)$ if and only if $\lim_{n \to \infty} Tf_n(x) = Tf(x)$. The inverse of T is given in the form: $T^{-1}f = f(\Phi(t))\varphi(t)$. Let

The inverse of T is given in the form: $T^{-1}f = f(\Phi(t))\varphi(t)$. Let us denote, by \mathcal{L} or $\mathcal{L}(a, b)$, the set of all Lebesgue-integrable functions defined on [a, b]. Then, the theorem concerning the change of variable in the Lebesgue integral asserts that:

Lemma 17. $T(\mathcal{L}(a, b))^{4} = \mathcal{L}(\alpha, \beta)$ and for $f \in \mathcal{L}(a, b)$, $\int_{a}^{b} f(t)dt = \int_{a}^{\beta} Tf(x)dx$.

Lemma 18. For the neighbourhood $V_{\varphi}(A, \varepsilon; f)$ in $\{\mathcal{M}, \varphi\}$, $T(V_{\varphi}(A, \varepsilon; f))$ is a neighbourhood in \mathcal{M} , and we have

 $T(V_{\varphi}(A, \varepsilon; f)) = V(\Phi(A), \varepsilon; Tf).$

Similarly, we have

 $T^{-1}(V(A, \varepsilon; f)) = V_{\varphi}(\Phi^{-1}(A), \varepsilon; T^{-1}f).$

Proof. In general, we have, for the measurable function r(t), $t \in [a, b]$, the following three properties: (i) $|r(t)| < \varepsilon \varphi(t)$ for all $t \in A$ if and only if $|Tr(x)| < \varepsilon$ for all $x \in \Phi(A)$. (ii) We have $\int_{\{t; |r(t)| > k\varphi(t)\}} \varphi(t) dt$ =mes $\{x; |Tr(x)| > k\}$ for k > 0. This follows from the theorem concerning the change of variable in the Lebesgue integral. Similarly, we have (iii) $\left| \int_{a}^{b} [r(t)]^{k\varphi(t)} dt \right| = \left| \int_{a}^{\beta} [Tr(x)]^{k} dx \right|$ for k > 0. Thus, from (i), (ii), (iii) and Lemma 16, the desired assertion follows.

³⁾ We see that the definition of $(E.R. \varphi)$ integral does not depend on the particular choice of the indefinite integral $\Phi(t)$.

⁴⁾ In general, when $\pi(p)$ is a mapping defined on R, for a subset E of R, $\pi(E)$ denotes the set $\{\pi(p); p \in E\}$.

No. 2]

By this Lemma, we see that $\{\mathcal{M}, \varphi\}$ is a space of depth ω_0 , since \mathcal{M} is a space of depth ω_0 . Hence, the indicator should be ω_0 . For $n=0, 1, 2, \dots$, a neighbourhood $V_{\omega}(A, \varepsilon; f)$ is said to be rank n, if it satisfies the following condition

lows that:

Lemma 19. $V_{\omega}(A, \varepsilon; f)$ is a neighbourhood of f of rank n in $\{\mathcal{M},\varphi\}$ if and only if $T(V_{\varphi}(A,\varepsilon;f))$ is a neighbourhood of T f of rank n in M.

By III, Proposition 4 and Lemmas 18, 19, we have:

Proposition 12. $\{\mathcal{M}, \varphi\}$ is a ranked space of depth ω_0 .

Lemma 20. $\{V_{\varphi}(A_n, \varepsilon_n; f_n)\}$ is fundamental in $\{\mathcal{M}, \varphi\}$ if and only if $\{T(V_{\varphi}(A_n, \varepsilon_n; f_n))\}$ is fundamental in \mathcal{M} .

Thus, we see that:

Proposition 13. The mapping T is an r-isomorphism of $\{\mathcal{M}, \varphi\}$ onto .M.

From this, paying attention to Lemma 16 and III, Lemmas 12, 13, we infer the following two Lemmas:

Lemma 21. If $\{f_n\}$ is an r-converging sequence in $\{\mathcal{M}, \varphi\}$, then the limit $f(x) = \lim_{n \to \infty} f_n(x)$ exists and $\{\lim_n f_n\}$ is the set consisting of f alone.

Lemma 22. If $f \in \{\lim_{n} f_n\}$ and $g \in \{\lim_{n} g_n\}$ in $\{\mathcal{M}, \varphi\}$, then we have $\alpha f + \beta g \in \{\lim_{n} (\alpha f_n + \beta g_n)\}$ in $\{\mathcal{M}, \varphi\}$ for any pair, α and β , of real numbers.

As in the preceding papers, denote by \mathcal{E} or $\mathcal{E}(a, b)$, the set of all step functions on [a, b].⁵ We now consider the set of such functions which are defined as r-limits of the sequences $\{f_n\}$ of points of \mathcal{E} in $\{\mathcal{M}, \varphi\}$, that is, the *r*-closure of \mathcal{E} in $\{\mathcal{M}, \varphi\}$. We denote the set by $K(\varphi)$, and call the function belonging to $K(\varphi)$ (E.R.) integrable function with respect to φ , or $(E.R. \varphi)$ integrable function. When $\varphi(t) = 1$, we simply denote, by K, the set $K(\varphi)$, that is, the set of all special (E.R.) integrable functions, as in the preceding papers. Then, we have:

Lemam 23. $Cl_r(K(\varphi)) = K(\varphi)$. **Proof.** Let $f \in Cl_r(\mathbf{K}(\varphi))$. Then, there is a sequence $\{f_n\}$ of

⁵⁾ In the case of an infinite interval [a, b], for example, $-\infty > x > +\infty$, step functions are functions having a constant value α_i in each of finite number of sub-intervals (finite or infinite) $a_{i-1} < x < a_i$ in a division of $-\infty < x < +\infty$: a_0 $=-\infty < a_1 < \cdots < a_n = +\infty$.

points of $K(\varphi)$ converging to f, and so there is a fundamental sequence $\{V_{\varphi}(A_n, \varepsilon_n; f)\}$ in $\{\mathcal{M}, \varphi\}$ such that $V_{\varphi}(A_n, \varepsilon_n; f) \ni f_n$ and $\varepsilon_n \ge 2\varepsilon_{n+1}$. Since $f_n \in K(\varphi)$, there are a point f_n^* of \mathcal{E} and a neighbourhood $V_{\varphi}(A_n^*, \varepsilon_n^*; f_n)$ of f_n in $\{\mathcal{M}, \varphi\}$ which has f_n^* as a member and satisfies the relations: $\varepsilon_n^* \le \varepsilon_n$ and $\int_{[a,b]\setminus A_n^*} \varphi(t) dt < \varepsilon_n^*$. Then $\{V_{\varphi}(A_n \cap (\bigcap_{m=n}^{\infty} A_m^*), 2^3\varepsilon_n; f)\}$ is fundamental in $\{\mathcal{M}, \varphi\}$ and we have $V_{\varphi}(A_n \cap (\bigcap_{m=n}^{\infty} A_m^*), 2^3\varepsilon_n; f)$ $\ni f_n^*$, which shows that $f \in K(\varphi)$.

In particular, we can see, from this Lemma, that $Cl_r(\mathcal{L}) = \mathbf{K}(\varphi)$ in $\{\mathcal{M}, \varphi\}$, because, as it is easily seen, if f is Lebesgue-integrable, it is also $(E.R. \varphi)$ integrable. Therefore, from Lemma 17 and Proposition 13, we have the following proposition:

Proposition 14. $T(\mathbf{K}(\varphi)) = \mathbf{K}$.

This result asserts that in order that f should be $(E.R. \varphi)$ integrable in [a, b], it is necessary and sufficient that Tf should be (E.R.) integrable in $[\alpha, \beta]$. By Lemma 16, Proposition 14 and III, Proposition 6, we have:

Proposition 15. $K(\varphi)$ is a vector space.

Now, we see, for every $(E.R. \varphi)$ integrable function f, that if $\{f_n\}$ is a sequence of points of \mathcal{E} *r*-converging to f in $\{\mathcal{M}, \varphi\}$, then the sequence of integrals $\int_a^b f_n(x)dx$ converges to a finite limit. In fact, since $f \in \{\lim_n f_n\}$ in $\{\mathcal{M}, \varphi\}$, we have, by Proposition 13, $Tf \in \{\lim_n Tf_n\}$ in \mathcal{M} . Moreover, since $Tf_n \in \mathcal{L}$ and $Cl_r(\mathcal{L}) = \mathbf{K}$ in \mathcal{M} , Tf is (E.R.) integrable in the special sense and we have $\lim_{n \to \infty} \int_a^\beta Tf_n(x)dx = (E.R.)$ $\int_a^\beta Tf(x)dx$. On the other hand, we have, by Lemma 17, $\int_a^b f_n(t)dt = (E.R.) \int_a^\beta Tf_n(x)dx$. Consequently, $\lim_{n \to \infty} \int_a^b f_n(t)dt$ exists and the value coincides with the value $(E.R.) \int_a^\beta Tf(x)dx$. This indicates that the limit does not depend on the particular choice of the sequence $\{f_n\}$ of points of \mathcal{E} converging to f. We understand by the *integral* of the function f the limit value, and we denote the value by $(E.R. \varphi) \int_a^b f(t)dt$.

As an immediate consequence of the definition, we have: Proposition 16. If f is $(E.R. \varphi)$ integrable, then we have

$$(E.R. \varphi) \int_{\alpha}^{b} f(t) dt = (E.R.) \int_{\alpha}^{\beta} Tf(x) dx.$$

Example 1. If we put $\varphi(t) = \frac{1}{t^2} e^{-\frac{1}{|t|}}$, $t \in [-1, 1]$, the function 1/t

is $(E.R. \varphi)$ integrable in [-1, 1], and we have $(E.R. \varphi) \int_{-1}^{1} 1/t \, dt = (E.R.) \int_{-1/e}^{1/e} 1/(x \log(1/|x|)) \, dx = 0.$

Let us introduce on $K(\varphi)$ and \mathcal{E} the sets of neighbourhoods and the ranks induced from $\{\mathcal{M}, \varphi\}$ respectively. We denote these ranked spaces by $\{K(\varphi), \varphi\}$ and $\{\mathcal{E}, \varphi\}$. Then, they are ranked subspaces of $\{\mathcal{M}, \varphi\}$. We also see that $\{\mathcal{E}, \varphi\}$ is a ranked subspace of $\{K(\varphi), \varphi\}$. Therefore, from Lemmas 18, 19, Proposition 14 and III, Lemma 15, we infer that:

Theorem 5. $\{K(\varphi), \varphi\}$ is a completion of $\{\mathcal{E}, \varphi\}$. Moreover, from Lemma 16, Propositions 13, 14, 16 and III, Theorem 4, we obtain that:

Theorem 6. The $(E.R. \varphi)$ integral is an r-continuous linear functional on $\{K(\varphi), \varphi\}$.

Since we have $Cl_r(\mathcal{L}) = \mathbf{K}(\varphi)$, we see, by Theorem 6, that $(E.R. \varphi)$ integral is defined as the *r*-continuous extension of Lebesgue integral.

From Proposition 14 and II, Theorem 2, we infer that:

Theorem 7. In order that a function f(t) should be $(E.R. \varphi)$ integrable in [a, b], it is necessary and sufficient that the function should satisfy the following two conditions:

$$\begin{split} & [A_1(\varphi)] \lim_{k \to \infty} k \int_{\{t; | f(t)| > k\varphi(t)\}} \varphi(t) dt = 0, \\ & [A_2(\varphi)] \lim_{k \to \infty} \int_a^b [f(t)]^{k\varphi(t)} dt \text{ exists,} \end{split}$$

where k runs through the set of all positive integers.

If ν is the measure defined by $\nu(B) = \int_{B} \varphi(t) dt$ in [a, b], from H. Yamagata [5] and Theorem 7, we see that:

Corollary 3. The (E.R. φ) integral coincides with the (E.R. φ) integral.

References

- K. Kunugi: Application de la méthode des espaces rangés à la theorie de l'intégration. I. Proc. Japan Acad., 32, 215-220 (1956).
- [2] —: Sur une généralisation de l'intégrale, fundamental and applied aspects of math. (published by Res. Inst. of Applied Electricity, Hokkaido Univ.), 1-30 (1959).
- [3] S. Nakanishi: On generalized integrals. I-III. Proc. Japan Acad., 44, 133– 138, 225–230, 904–909 (1968).
- [4] H. Okano: Sur les intégrales (E. R.) et ses applications. Osaka Math. J., 11, 187-212 (1959).
- [5] H. Yamagata: Singular cut-off process and Lorentz properties. Proc. Japan Acad., 41, 547-552 (1965).