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20. On Generalized Integrals. IV

By Shizu NAKANISHI
(Comm. by Kinjird KuNuUGI, M. J.A., Feb. 12, 1969)

The (E.R.) integral proposed by Prof. K. Kunugi in [1], that is,
the (E.R.) integral in the special sense, which is defined as an exten-
sion of the Lebesgue integral, cannot always integrate the important
functions: for example, the function 1/x is not (E.R.) integrable in
the special sense in [—1, 1]. Prof. K. Kunugi remarked in [1] that
the method of change of the variable admits the extension of the
range of the integration. We see the precise definition in [2]. In
fact, to do this, he used the function g defined in [«, 8], which is non-
negative and Lebesgue-integrable. Let G(x) be the indefinite integral
of g such that G(a)=a and G(B)=0b. For the function f(¢) defined in
[a, b], if the function fi(x)=f(G(x))g(x) is (E.R.) integrable in the
special sense in [a, 8], the function f(¢) is said to be (E.R.) integrable
in the extended sense in [a, b], and we understand by the integral of

f(@®) in the extended sense in [a, b] the number (F.R.) r F(G(x)g(x)dx.

For example, the function 1/t is (E.R.) integrable in the extended
sense in [—1,1]. For, if we put g(x)=1/(|z]| log@1/|x|)», and put
G(x)=1/log(1/x) for x>0, G(0)=0, G(x)=—G(—=x) for <0, then
G(x) is the indefinite integral of g(x) such that G(—1/e)=—1 and
G(1/e)=1, and the function g(x)/G(x)=1/(x log(1/|x|)) is (E.R.) inte-
grable in the special sense in [—1/e, 1/e]. Hence, the function 1/¢ is
(E.R.) integrable in the extended sense in [—1, 1], and the integral is

(E.R.) f/l/l J(z log(1/ | | )dz=0.

This theory of Prof. K. Kunugi has been extended to the abstract
measure space in [4] by H. Okano. He termed it (¥.R.) integral with
respect to a measure vy, or (E.R. v) integral.

In the preceding papers [3], we obtained the set K of special (E.R.)
integrable functions as a completion of the set & of step functions,
and showed that the special (E.R.) integral is a continuous linear
functional on the complete ranked space K. The purpose of this paper
is to define the (F.R.) integral in the extended sense in a similar way.
Let ¢(t) be a positive, Lebesgue-integrable function defined in a finite
or infinite interval [a, b]” and @(f) be the indefinite integral of ¢(¢)

1) The infinite interval [a, b] designates one of the intervals —oco<2< 4 oo,
<<+ (@ —00) and —co<x<h (b4 o).
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such that &(a)=a and &(B)=>b, and denote by &' the inverse of @.
Denote by H(a, b) the set of all measurable functions on [a, b]. In
order to define the (F.R.) integral in the extended sense, which we
will call (E.R. ¢) integral, or (E.R.) integral with respect to ¢, first
we will introduce the ranked space {H(a, D), ¢}. When ¢@(t)=1,
{HM(a, b), ¢} coincides with the ranked space M, or M(a, b), intro-
duced in the consideration of the special (¥.R.) integral (see III).? In
this paper, the set of all (E.R. ¢) integrable functions is given as the
r-closure of & in {H(a, b), ¢}, in other words, the (E.R. ¢) integrable
function is defined as the r-limit of a sequence {f,} of step functions
in {M(a, b), ¢}. Moreover, the integral is defined as the r-continuous
extension of the integrals of step functions. For the consideration of
the (E.R. ¢) integral, it is useful to consider the mapping
Tf=5@ ()@ ()

from M(a, b) onto M(a, B). For example, we get the following re-
sults: we have fe{limf,} in {H(a, b), ¢} if and only if we have

Tfe{imTf,}in M. Moreover, when f(x) is (E.R. ¢) integrable in

[a, b] and when {f,} is a sequence of step functions converging to f in
{M(a, b), ¢}, Tf is (E.R.) integrable in the special sense and the fol-

lowing relation holds:

(E.R. ¢) j” FOdt=lim :fn(t)dt=1im T7.(@de=(E.R) f Tf(x)dz.

n—oo n-—c

7. The extended (E.R.) integrals. First of all, let us consider
the set of all measurable functions each of which is defined almost
everywhere in a finite or infinite interval [a, b], which we shall denote
by M, or, for the purpose of calling special attention to the interval
[a, b] in which the functions are defined, by H(a, b). We also regard
two functions equal if they differ only in a set of measure zero. Let
¢(t) be a positive, Lebesgue-integrable function in [a, b]. We intro-
duce on the set 9 a set of neighbourhoods in the following way :

Definition 4. Given a closed subset A of [a, b] and a positive
number ¢, the neighbourhood of the point f of i, which we shall de-
note by V (4, ¢; f) (or simply by V(4, ¢; f) if there is no ambiguity
about ¢), is the set of all those measurable functions g(f) which are
expressible as the sums of f(¢) and the other functions () with the
following properties :

[a(p)]  |r@®)|<ep(t) forall te A,

[B(p)] kf pt)dt<e for each k>0,
{E;1r @) I>ke(t)}
[y ()] j [r(®)]*Odt

2) The reference number indicates the number of the Note.

<e for each k>0,
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where the function [7(¢)]**®, the truncation of 7(f) by the positive
function k¢(t), is defined by
[7(£)]Fe® = {7"(t) if |”'(t)|Sk§0(t),
ko(t) signrt) if |r(®)|>ke(t).
Then, the neighbourhoods satisfy the axioms (A) and (B) of Haus-
dorff. We consider the set ) endowed with such a set of neighbour-
hoods, which we shall denote by { M, ¢} or {H(a, b), ¢}. In the case
of p(t)=1, {M, ¢} coincides with the ranked space (¥ introduced in
the consideration of the special (E.R.) integral (see III). When ¢(¢)
=1, as in III, we simply denote the space {M, ¢} by M or M(a, b),
and simply denote the neighbourhood of f by V(4, ¢; f). Let a=&(?),
tela, b]l, be the indefinite integral of ¢(¢) such that &(e)=a and
d(b)=p," a, B+ +oo. Let us consider the following mapping:
T f(@)=f(@ (@)D (x)) (z ela, 8D,
where @' denotes the inverse of ®. Then:
Lemma 16. Tf is a one to one linear mapping of (e, b) onto
M, B), and lim f,(t)= f(t) if and only if lim T f,(x)=T f(x).

n—o n

The inverse of T is given in the form: T-'f=f(@({)¢(t). Let
us denote, by L or _L(a, b), the set of all Lebesgue-integrable func-
tions defined on [a, b]. Then, the theorem concerning the change of
variable in the Lebesgue integral asserts that:

Lemma 17. T(L(a, b))*=L(a, f) and for fe L(a,b), j" FHdt
_ j” Tf(@)dw.

Lemma 18. For the meighbourhood V (A, ¢; f) in {H, ¢},
T(V,(A,¢; f) is a netighbourhood in M, and we have
TV, (A, e; N=V(@A),e; Tf).
Similarly, we have
T (V(A, e; N=V (@A), e; T'f).
Proof. In general, we have, for the measurable function 7(t),
t e [a, bl, the following three properties: (i) |r(f)|<ep(t) for allte A
if and only if | Tr(x)|<e for all x € ®(A). (ii) We have j o®dt

{t5 17 @O1>ke ()

=mes{z; |Tr(x)|>k} for £>0. This follows from the theorem con-
cerning the change of variable in the Lebesgue integral. Similarly,

Ib[r(t)]"“”dt jﬁ[Tr(x)]kdx\ for k>0. Thus, from

@), (i), (iii) and Lemma 16, the desired assertion follows.

we have (iii)

3) We see that the definition of (E. R. ¢) integral does not depend on the
particular choice of the indefinite integral @(t).

4) In general, when #(p) is a mapping defined on R, for a subset E of R,
z(E) denotes the set {n(p); p e E}.
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By this Lemma, we see that {, ¢} is a space of depth w,, since
M is a space of depth w,. Hence, the indicator should be w,. For
n=0,1,2, ..., a neighbourhood V,(4, ¢; f) is said to be rank =, if it
satisfies the following condition

[0(p)] L b]\Agp(t)dt<e and e=2"",

We have the relation I
lows that:

Lemma 19. V (A4, ¢; f) is a neighbourhood of f of rank n in
{H, ¢} if and only if T(V (A, ¢; f)) is a netghbourhood of Tf of rank
nin M.

By III, Proposition 4 and Lemmas 18, 19, we have:

Proposition 12. {9, ¢} is a ranked space of depth w,.

Lemma 20. ({V (4,, ¢,; f.)} s fundamental in {H, ¢} if and only
if {T(V,(A,, &, )} 18 fundamental in M.

Thus, we see that:

Proposition 13. The mapping T is an r-isomorphism of { <M, ¢}
onto M.

From this, paying attention to Lemma 16 and III, Lemmas 12,
13, we infer the following two Lemmas:

Lemma 21. If {f,} is an r-converging sequence in { M, ¢}, then
the limit f(x)=lim f,(x) exists and {lim f,} is the set consisting of f
alone. T "

Lemma 22. If fe{lim f,} and ge{limg,} in {M, ¢}, then we

have af+ Bg e {lim(af,+ B9,)} in {M, ¢} for any pair, a and B, of

real numbers.

As in the preceding papers, denote by € or &(a, b), the set of all
step functions on [a, b].® We now consider the set of such functions
which are defined as r-limits of the sequences {f,} of points of & in
{M, ¢}, that is, the r-closure of & in {H, ¢}. We denote the set by
K(p), and call the function belonging to K(¢) (E.R.) integrable func-
tion with respect to ¢, or (E.R. @) integrable function. When ¢(t)=1,
we simply denote, by K, the set K(¢), that is, the set of all special
(E.R.) integrable functions, as in the preceding papers. Then, we
have:

Lemam 23. Cl(K(¢))=K(¢p).

Proof. Let feCl(K(¢)). Then, there is a sequence {f,} of

5) In the case of an infinite interval [a, b], for example, —co>2>+ 0, step
functions are functions having a constant value «; in each of finite number of

sub-intervaly (finite or infinite) a;1<x<a; in a division of —oco<x<+o0: ay
=—ocol < - <Ap=+00,

\ o(t)dt=mes ([a, B1\D(A)), therefore it fol-
N4

[a,b
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points of K(¢) converging to f, and so there is a fundamental sequence
{(V,(A,, e,; N} in {M, ¢} such that V (A, e,; f) o fn and &,>2¢,,,.
Since f, e K(p), there are a point f¥ of & and a neighbourhood
V (A%, ¥ fu) of f, in {H, ¢} which has f} as a member and satisfies

the relations: e*<e, and J. pMdt<er. Then {V (A,N( f”] A¥),
[a, m=n

b1\4%,
2%, ; 1)} is fundamental in { %/, ¢} and we have V (4, N( E\ A¥), 2%, 5 1)

5 f*, which shows that f e K(¢p).

In particular, we can see, from this Lemma, that Cl.(L)=K(p)
in { M, ¢}, because, as it is easily seen, if f is Lebesgue-integrable, it
is also (E.R. ¢) integrable. Therefore, from Lemma 17 and Proposi-
tion 13, we have the following proposition:

Proposition 14. T(K(¢))=K.

This result asserts that in order that f should be (E.R. ¢) inte-
grable in [a, b], it is necessary and sufficient that T'f should be (E.R.)

integrable in [a, B]. By Lemma 16, Proposition 14 and III, Proposi-
tion 6, we have:

Proposition 15. K(¢) is a vector space.
Now, we see, for every (E.R. ¢) integrable function f, that if
{f.} is a sequence of points of & r-converging to f in { <M, ¢}, then the

sequence of integrals Jb fa(x)dx converges to a finite limit. In fact,
since f € {lim f,} in { M, ¢}, we have, by Proposition 13, T f ¢ {lim T f,.}
in 4. Moreover, since Tf,c L and Cl(L)=K in M, Tf is (E.R.)

8
integrable in the special sense and we have lim | 7f,(x)de=(E.R.)

n—o Ja

r Tf(x)dx. On the other hand, we have, by Lemma 17, jb Fa(Odt
=(E.R.) r Tf.(x)dx. Consequently, lim ’ f.(Hdt exists and the value

n—wo Ja

coincides with the value (E.R.) r Tf(x)dx. This indicates that the

limit does not depend on the particular choice of the sequence {f,} of
points of & converging to f. We understand by the integral of the
function f the limit value, and we denote the value by (E.R. ¢)

IZ F(t)dt.

As an immediate consequence of the definition, we have:
Proposition 16. If f is (E.R. ¢) integrable, then we have

b B
(E.R. go)J f(t)dt:(E.R.)I T r(z)dz.

Example 1. If we put go(t):tlze-T%T, te[—1, 1], the function 1/¢
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is (E.R.¢) integrable in [—1,1], and we have (E.R. ) f 1/t dt
-1
—(E.R.) f’“/ 1/(x log (1/|]) dz=0.
~1/e

Let us introduce on K(¢) and & the sets of neighbourhoods and
the ranks induced from { ¥, ¢} respectively. We denote these ranked
spaces by {K(¢), ¢} and {&, ¢}. Then, they are ranked subspaces of
{H, }. We also see that {&, ¢} is a ranked subspace of {K(¢p), ¢}.
Therefore, from Lemmas 18, 19, Proposition 14 and III, Lemma 15,
we infer that:

Theorem 5. {K(p), ¢} is a completion of {&, ¢}.

Moreover, from Lemma 16, Propositions 13, 14, 16 and III, Theorem
4, we obtain that:

Theorem 6. The (E.R. ) integral is an r-continuous linear func-
tional on {K(¢p), ¢}.

Since we have Cl(L)=K(¢), we see, by Theorem 6, that (E.R. ¢)
integral is defined as the r-continuous extension of Lebesgue integral.

From Proposition 14 and II, Theorem 2, we infer that:

Theorem 7. In order that a function f(t) should be (E.R. ¢) in-
tegrable in [a, b], it s necessary and sufficient that the function should
satisfy the following two conditions:

[A,(p] lim k et)dt=0,

—e {61 1>k )}
(A, lim [ [f@®)1*© dt ewists,
where k runs through thek;Zt o‘} all positive integers.
If v is the measure defined by v(B):fBgo(t)dt in [a, b], from H.

Yamagata [5] and Theorem 7, we see that:

Corollary 3. The (E.R. v) integral coincides with the (E.R. ¢)
integral.
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