38. On Weak Convergence of Transformations in Topological Measure Spaces. II¹⁾

By Ryotaro SATO

Department of Mathematics, Josai University, Saitama (Comm. by Kinjirô KUNUGI, M. J. A., March 12, 1969)

The author extended slightly in [4] a theorem of F. Papangelou [2, Theorem 2] as follows: Let X be a metrizable locally compact space and $\mu \neq \sigma$ -finite Radon measure on X. Then a sequence $\{T_n\}$ of invertible μ -measure-preserving transformations in X converges to an invertible μ -measure-preserving transformation T in X weakly if and only if every subsequence $\{T_{k(n)}\}$ of $\{T_n\}$ has a subsequence $\{T_{k(l(n))}\}$ which converges to T almost everywhere.

In this paper we study weak convergence of a sequence $\{T_n\}$ of invertible μ -measure-preserving transformations in a metrizable space X with a tight measure μ . The theorems below generalize the first two theorems in [4].

Let (M, Ω, μ) be any measure space. The members of Ω are called measurable. If *E* is measurable then we will say that the measure space (E, Ω_E, μ_E) , where $\Omega_E \equiv \{F \in \Omega \mid F \subset E\}$ and $\mu_E(F) \equiv \mu(F)$ for *F* which belongs to Ω_E , is a subspace of (M, Ω, μ) .

Definition 1. A measure space (M, Ω, μ) is a σ -finite Lebesgue space if there exists a countable family $\Gamma = \{M_n\}$ of mutually disjoint measurable sets such that $0 < \mu(M_n) < \infty$, $\bigcup_n M_n = M$, and $(M_n, \Omega_{M_n}, \mu_{M_n})$

is a Lebesgue space in the sense of V. A. Rohlin [3] for each n.

Proposition 1. If (M, Ω, μ) is a σ -finite Lebesgue space then there exist a locally compact, σ -compact, metrizable space H containing M and a Radon measure ν on H which satisfy the following properties:

- (i) *M* is a ν -measurable subset of *H* and $\nu(H-M)=0$.
- (ii) (M, Ω, μ) is a subspace of (H, M, ν), where M is the σ-field of subsets of H which are ν-meaurable.

Moreover if $\Gamma_n = \{\Gamma_{nj}\}$ is a basis of the Lebesgue space $(M_n, \Omega_{M_n}, \mu_{M_n})$, where $\{M_n\}$ is a countable measurable decomposition of M such that $(M_n, \Omega_{M_n}, \mu_{M_n})$ is a Lebesgue space for each n, then the sets of the form $\bigcap_{j=1}^{N} A_{nj}$, where A_{nj} stands for one of the two sets Γ_{nj} and $M_n - \Gamma_{nj}$, can be taken as the topological open basis of the topological subspace

¹⁾ Continued from the paper No. 10 in Proc. Japan Acad., 45, 39-44 (1969).

M of H.

Proof. Let $\Gamma_n = \{\Gamma_{nj}\}$ be a basis of the Lebesgue space M_n . Then there exists a complete measure space $(\tilde{M}_n, \tilde{\Omega_n}, \tilde{\mu}_n)$ with basis $\tilde{\Gamma}_n = \{\tilde{\Gamma}_{nj}\}$ having the following properties:

- (iii) $M_n \subset \tilde{M}_n, M_n \in \tilde{\Omega}_n, \tilde{\mu}_n (M_n M_n) = 0, \tilde{\Gamma}_{nj} \cap M_n = \Gamma_{nj}$ for each j, and $(M_n, \Omega_{M_n}, \mu_{M_n})$ is a subspace of $(\tilde{M}_n, \tilde{\Omega}_n, \tilde{\mu}_n)$.
- (iv) All sets of the form $\bigcap \tilde{A}_{nj}$, where \tilde{A}_{nj} stands for one of the two sets $\tilde{\Gamma}_{nj}$ and $\tilde{M}_n^j \tilde{\Gamma}_{nj}$ and j runs through all possible values, are nonvoid.

If we take the family of the sets of the form $\bigcap_{j=1}^{N} \tilde{A}_{nj}$ as the topological basis of the topology of \tilde{M}_n then it is easy to see that \tilde{M}_n is homeomorphic to the direct product topological group H_n of the countably many copies of the cyclic group Z(2) of order 2 with discrete topology. Hence \tilde{M}_n is a compact metrizable space with respect to this topology. Then it is not difficult to see that $\tilde{\mu}_n$ is just a Radon measure on \tilde{M}_n .

In fact the σ -field generated by the sets of the form $\bigcap_{j=1}^{N} \tilde{A}_{nj}$ coincides with the σ -field \mathfrak{B} generated by the open subsets of \tilde{M}_n and $\tilde{\mu}_n$ on $\tilde{\Omega}_n$ is the completion of $\tilde{\mu}_n$ on \mathfrak{B} . Since \tilde{M}_n is a compact metrizable space, it follows now that for any measurable subset E of \tilde{M}_n and for any $\varepsilon > 0$ there exist a compact set K and an open set G in \tilde{M}_n such that $K \subset E \subset G$ and $\tilde{\mu}_n (G-K) < \varepsilon$ (refer to [1, Theorem 1.1]). This implies that $\tilde{\mu}_n$ is a Radon measure on \tilde{M}_n .

Put $H = \bigcup_n \tilde{M}_n$, where we can assume that all \tilde{M}_n are mutually disjoint. We will define a subset 0 of H to be open in H if $\tilde{M}_n \cap 0$ is an open subset of \tilde{M}_n for each n. Then obviously H is a locally compact, σ -compact, metrizable space. If we define a measure ν on the σ -field $\tilde{\Omega} \equiv \left\{ \bigcup_n E_n | E_n \in \tilde{\Omega}_n \right\}$ of subsets of H as follows:

 $u\left(\bigcup_{n}E_{n}\right)=\sum_{n}\widetilde{\mu}_{n}(E_{n})$

for $\bigcup_{n} E_{n} \in \tilde{\Omega}$, where E_{n} belongs to $\tilde{\Omega}_{n}$ for each *n*. Then it follows that ν is a Radon measure on *H*. In fact, for every $E \in \tilde{\Omega}$ we have $\nu(E) = \sup \{\nu(K) | K \subset E \text{ and } K \text{ is compact} \}$

= inf { $\nu(G) | E \subset G$ and G is open}.

The proposition is now obvious.

Let (M, Ω, μ) be any measure space. We denote by \mathfrak{G} the group of all invertible μ -measure-preserving transformations in M.

Definition 2. The sequence $\{T_n\}$ in G converges to T in G weakly if $\lim_{n \to \infty} \mu(T_n E + TE) = 0$ for every measurable subset E of M with $\mu(E) < \infty$.

Proposition 2. Let (M, Ω, μ) be a σ -finite Lebesgue space. If T, T_n $(n=1,2,3,\cdots)$ are in \mathfrak{G} then (a) and (b) below are equivalent:

- (a) $\{T_n\}$ converges to T weakly.
- (b) Every subsequence {T_{k(n)}} of {T_n} has a subsequence {T_{k(l(n))}} which converges to T almost everywhere with respect to the topology given in the second half of Proposition 1.

Proof. The proof is obvious by virtue of Proposition 1 and [2, Theorem 2].

Let X be any metrizable space and \mathfrak{B} the σ -field generated by the open subsets of X. The members of \mathfrak{B} are called the Borel subsets of X. A complete measure μ on a σ -field \mathfrak{M} of subsets of X is a tight measure on X if $\mathfrak{B} \subset \mathfrak{M}$, μ on \mathfrak{M} is the completion of μ on \mathfrak{B} , and

 $\mu(E) = \sup \{ \mu(K) | K \subset E \text{ and } K \text{ is compact} \}$

for every measurable set of finite measure. μ is locally finite if any point of X has an open neighborhood with finite measure.

Proposition 3. Let X be a separable, complete metric space. If a measure μ on \mathfrak{M} is the completion of a σ -finite measure on \mathfrak{B} then μ is a tight measure on X.

Proof. There exists a countable family $\{E_n\}$ of mutually disjoint Borel sets such that $0 < \mu(E_n) < \infty$ for each n and $\bigcup_n E_n = X$. We define a measure λ_n on \mathfrak{B} as follows: $\lambda_n(E) = \mu(E_n \cap E)$ ($E \in \mathfrak{B}$). Then λ_n is a finite measure on \mathfrak{B} , and so for any Borel set E and for any positive number ε there exist a compact set K and an open set G in Xsuch that $K \subset E \subset G$ and $\lambda_n(G-K) < \varepsilon$ (refer to [1, Theorems 1.1 and 1.4]).

Let A be a measurable set of finite measure. We may assume without loss of generality that A is a Borel set. If $\varepsilon > 0$ is arbitrarily fixed then there exists a positive integer N such that $\mu\left(\bigcup_{n=1}^{N} A_{n}\right) > \mu(A)$ $-\varepsilon$, where $A_{n} \equiv A \cap E_{n}$ for each n. Hence

$$\sum_{n=1}^N \lambda_n(A_n) > \mu(A) - \varepsilon.$$

Thus there exist compact sets K_n $(n=1,2,\dots,N)$ such that $K_n \subset A_n$ and $\lambda_n(A_n-K_n) < \varepsilon/N$ for each n $(n=1,2,\dots,N)$. If we put $K = \bigcup_{n=1}^N K_n$ then we have

$$\mu(A-K) = \mu\left(A - \bigcup_{n=1}^{N} A_n\right) + \mu\left(\bigcup_{n=1}^{N} A_n - K\right)$$

< $\varepsilon + \sum_{n=1}^{N} \lambda_n(A_n - K_n) < 2\varepsilon.$

This completes the proof.

Let T_1 and T_2 be mappings of X into itself. Then we define the mapping denoted by $T_1 \times T_2$ of X into $X \times X$ as follows: $(T_1 \times T_2)x = (T_1x, T_2x) \ (x \in X)$.

No. 3] Weak Convergence of Transformations in Measure Spaces. II 167

Lemma. Let X be a metrizable space and μ a σ -finite tight measure on X. If T_1 and T_2 are measure-preserving transformations of (X, \mathfrak{M}, μ) into itself then the inverse image $(T_1 \times T_2)^{-1}(B)$ of any Borel subset B of $X \times X$ is a measurable subset of X.

Proof. There exists a countable family $\{X_n\}$ of mutually disjoint measurable sets of finite measures such that $\bigcup_n X_n = X$. Then by the tightness of μ there exists a countable family $\{K_j\}$ of mutually disjoint compact sets of finite measures such that $\mu\left(X - \bigcup_j K_j\right) = 0$. Thus an argument analogous to that in the proof of [4, Lemma 2] suffices.

Theorem 1. Let X be a metrizable space and μ a σ -finite tight measure on X. If T, T_n $(n=1,2,3,\cdots)$ are in \mathfrak{G} then (α) below implies (β) . In addition, if μ is locally finite then (α) and (β) are equivalent:

- (a) $\{T_n\}$ converges to T weakly.
- (β) Every subsequence $\{T_{k(n)}\}$ of $\{T_n\}$ has a subsequence $\{T_{k(l(n))}\}$ which converges to T almost everywhere.

Proof. (a) implies (β) : There exists a countable family $\{K_n\}$ of mutually disjoint compact sets such that $0 < \mu(K_n) < \infty$, $\mu\left(X - \bigcup_n K_n\right) = 0$. It is well-known that $(K_n, \Omega_{K_n}, \mu_{K_n})$ is a Lebesgue space and a countable open basis $\Gamma_n = \{\Gamma_{nj}\}$ can be taken as a basis of $(K_n, \Omega_{K_n}, \mu_{K_n})$ (see [3]). Hence $\left(\bigcup_n K_n, \Omega_{\bigcup_n K_n}, \mu_{\bigcup_n K_n}\right)$ is a σ -finite Lebesgue space. We can now see T, T_n $(n=1,2,3,\cdots)$ as invertible $\mu_{\bigcup_n K_n}$ -measure-preserving transformations in $\bigcup_n K_n$. By virtue of Proposition 2, we have that if $\{T_n\}$ converges to T weakly there exists a subsequence $\{T_{k(n)}\}$ of $\{T_n\}$ which converges to T almost everywhere with respect to the topology induced by the topological basis of the sets of the form $\bigcap_{j=1}^{N} A_{nj}$, where A_{nj} stands for one of the two sets Γ_{nj} and $K_n - \Gamma_{nj}$. This topology is obviously finer than the topology of the topological subspace $\bigcup_n K_n$ of the metrizable space X. This implies that $\{T_{k(n)}\}$ converges to T almost everywhere with respect to the topology of X.

If μ is locally finite then (β) implies (α) : By virtue of Lemma, the proof runs on the same line as that of the corresponding part of [2, Theorem 2], and so we omit the proof here.

Theorem 2. Let X be a metrizable space and μ a σ -finite, locally finite tight measure on X. Let \mathfrak{G} be the group of all automorphisms of the measure space (X, \mathfrak{M}, μ) . Then weak topology on \mathfrak{G} is the finest topology \mathfrak{T} such that if a sequence $\{T_n\}$ in \mathfrak{G} converges to T in \mathfrak{G} almost everywhere then \mathfrak{T} -lim $T_n = T$. **Proof.** By virtue of Theorem 1, the proof is analogous to that of [2, Theorem 3].

Remark 1. In the first half of Theorem 1 the σ -finiteness of μ is not omitted. To see this, let X be the unit interval [0, 1] with discrete topology. We define μ on the family \mathfrak{M} of all subsets of X as follows

$$\mu(E) = \begin{cases} 0 & \text{if } E \text{ is a finite set} \\ \infty & \text{if } E \text{ is an infinite set} \end{cases} \quad (E \in \mathfrak{M}).$$

Then μ is a tight measure on X, but not σ -finite. Let T be an arbitrary one to one onto transformation in X such that $Tx \neq x$ for all x. Then we put $T_n = T$ $(n=1,2,3,\cdots)$. It is obvious that $\{T_n\}$ converges to any invertible μ -measure-preserving transformation T in X weakly. However for any x in X $\lim T_n x = Tx \neq x = Ix$, where I is the identity transformation in X.

Remark 2. In the second half of Theorem 1 the locally finiteness of μ is not omitted. To see this, let $X = \{0, 1, 1/2, 1/3, \cdots\}$. X is a compact metric space as a subspace of the real line. We define μ on the σ -field \mathfrak{B} of all Borel subsets of X as follows:

 $\mu(E) = egin{cases} n & ext{if E contains n elements} \ \infty & ext{if E is an infinite set} \end{cases}$ $(E \in \mathfrak{B}).$

Then μ is a σ -finite tight measure on X, but not locally finite. In fact, any open set containing 0 is of infinite measure. Let T_n be an invertible μ -measure-preserving transformation in X defined as follows:

$$T_{n}x = \begin{cases} 1/n & \text{if } x = 0 \\ 0 & \text{if } x = 1/n \\ x & \text{if } x \neq 0, 1/n \end{cases} \quad (x \in X).$$

Then $\lim T_n x = x$ for every x in X. But if we put $E = \{0\}$ then

 $\mu(E) < \infty$, $\lim_{n \to \infty} \mu(T_n E + IE) = 2.$

This implies that $\{T_n\}$ does not converge to the identity transformation I in X weakly.

Remark 3. Let (X, Ω, μ) and (Y, Σ, ν) be two σ -finite Lebesgue spaces. If U is an isomorphism of the measure ring (Ω, μ) associated with (X, Ω, μ) onto the measure ring (Σ, ν) associated with (Y, Σ, ν) then U is generated by the unique invertible measure-preserving transformation T(U) of (X, Ω, μ) onto (Y, Σ, ν) mod zero. This is an easy application of the theory of V. A. Rohlin [3].

Sincere thanks are due Professor Shigeru Tsurumi for his constructive criticism and valuable suggestions.

168

References

- [1] P. Billingsley: Convergence of Probability Measures. New York (1968).
- [2] F. Papangelou: On weak convergence and convergence in measure of transformations in topological measure spaces. J. London Math. Soc., 43, 521-526 (1968).
- [3] V. A. Rohlin: On the fundamental ideas of measure theory. Amer. Math. Soc., Translations Series 1, 10, 1-54 (1962).
- [4] R. Sato: On weak convergence of transformations in topological measure spaces. Proc. Japan Acad., 45, 39-44 (1969).