On Generalized (A)-integrals. I 37.

By Kaoru YONEDA University of Osaka Prefecture (Comm. by Kinjirô KUNUGI, M. J. A., March 12, 1969)

1. Introduction. To consider conjugate functions E.C. Tichmarsh introduced, in [1], the (Q)-integral. We say that f(x) is (Q)-integrable in [a, b] when there exists $\lim_{n \to \infty} \int_{a}^{b} [f(x)]_{n} dx$ and it is finite, and the limit is denoted by $(Q) \int_{a}^{b} f(x) dx$. But the (Q)-integral does not possess the additive property of integral. A.N. Kolmogorov showed, in [2], that if (Q)-integrable functions $f_i(x)$ (i=1, 2) satisfies the condition: $n \max(x; |f_i(x)| \ge n) = o(1)$ (i=1, 2), for any α_i (i=1, 2), $\sum \alpha_i f_i(x)$ is also (Q)-integrable and (Q) $\int_{a}^{b} \sum_{i} \alpha_{i} f_{i}(x) dx = \sum_{i} \alpha_{i}(Q) \int_{a}^{b} f_{i}(x) dx$. If a (Q)integrable function f(x) satisfies the above condition, we say that f(x)is (A)-integrable in [a, b], and give a value of the (A)-integral by that of the (Q)-integral. A Lebesgue integrable function is (A)-integrable and both integrals have the same value. But there exists a function which is not (A)-integrable, for example $g(x) = (-1)^n / x$ where 1/n $+1 < x \leq 1/n$ (n=1,2,...) and g(0)=0. K. Kunugi has proposed in [3] the notion of the generalized (E.R.)-integral by which this g(x) is integrable in [0, 1].

In this paper, we state a generalization of the (A)-integral.

2. The generalization of (A)-integral. In this paper, consider only real valued functions which are measurable and almost everywhere finite in [0, 1] and denote the set of these functions by $\mathfrak{M}[0, 1]$. Let $\mathfrak{H} \equiv \{h_n(x)\}_{n=1,2,\dots}$ be a sequence of non-negative Lebesgue integrable functions tending to infinite almost everywhere in [0, 1].

Definition of the $(\mathbf{A}, \mathfrak{G})$ -integral. We say that f(x) of $\mathfrak{M}[0, 1]$ is $(\mathbf{A}, \mathfrak{G})$ -integrable in [0, 1] if f(x) satisfies following [a] and [b]:

- $[a] \quad \int_{(x;|f(x)| \ge \alpha h_n(x))} h_n(x) dx = o(1) \text{ for any } \alpha > 0,$ $[b] \quad \lim_{n \to \infty} \int_0^1 [f(x)]_{h_n} dx \text{ exists and is finite, where}$

 $[f(x)]_{h_n} = f(x) \text{ for } |f(x)| < h_n(x) \text{ and } = 0 \text{ for } |f(x)| \ge h_n(x).$

The value of the integral is given by this limit and we denote it $by (\mathbf{A}, \mathfrak{H}) \int_{a}^{1} f(x) dx.$

Especially put $h_n(x) = n u(x)$, where u(x) is positive and Lebesgue

K. YONEDA

integrable, we can replace [a] by following $[a']: [a'] n \int_{(x;|f(x)| \ge nu(x))} u(x) dx = o(1)$. The generalization in this form has already been gotten by H. Yamagata [4].

The $(\mathbf{A}, \mathfrak{H})$ -integral has a few properties which the (\mathbf{A}) -integral has.

Proposition 1. The $(\mathbf{A}, \mathfrak{H})$ -integral possess the additive property of integral.

Proposition 2. Let $\{f_n(x)\}$ be a sequence of $(\mathbf{A}, \mathfrak{H})$ -integrable functions satisfying (1) $f_1(x) \leq f_2(x) \leq \cdots$ and (2) $(\mathbf{A}, \mathfrak{H}) \int_0^1 f_n(x) dx$ are uniformly bounded, and put $\lim_{n \to \infty} f_n(x) = f(x)$, then f(x) is $(\mathbf{A}, \mathfrak{H})$ integrable and $(\mathbf{A}, \mathfrak{H}) \int_0^1 f(x) dx = \lim_{n \to \infty} (\mathbf{A}, \mathfrak{H}) \int_0^1 f_n(x) dx$.

We introduce some notations as follows.

(1) When there are two integrals, X integral and Y integral, if any X integrable function is Y integrable and both integrals have the same value, we write $(X) \triangleleft (Y)$, and if the converse is also true, we write (X)=(Y).

(2) $p(x) \lor q(x) \equiv \max(p(x), q(x)), p(x) \land q(x) \equiv \min(p(x), q(x)).$ When $\mathfrak{F}^{(i)} \equiv \{h_n^{(i)}(x)\}_{n=1,2,\dots}$ (i=1, 2),

(3) $\mathfrak{H}^{(1)} \vee \mathfrak{H}^{(2)} \equiv \{h_n^{(1)}(x) \vee h_n^{(2)}(x)\}, \ \mathfrak{H}^{(1)} \wedge \mathfrak{H}^{(2)} \equiv \{h_n^{(1)}(x) \wedge h_n^{(2)}\}$ and $c_1 \mathfrak{H}^{(1)} + c_2 \mathfrak{H}^{(2)} \equiv \{c_1 h_n^{(1)} + c_2 h_n^{(2)}\} \ where \ c_i > 0 \ (i=1,2).$

Proposition 3. Denote the Lebesgue integral by L, we have $(L) \triangleleft (\mathbf{A}, \mathfrak{H})$ for any \mathfrak{H} .

Proposition 4. A non-negative $(\mathbf{A}, \mathfrak{H})$ -integrable function is Lebesgue integrable.

Proposition 5. If \mathfrak{H}_s is a sub-sequence of \mathfrak{H} , we have $(\mathbf{A}, \mathfrak{H}) \triangleleft (\mathbf{A}, \mathfrak{H}_s)$.

Proposition 6. For any positive number $c, (\mathbf{A}, \mathfrak{H}) = (\mathbf{A}, c\mathfrak{H})$.

Proposition 7. When f(x) is $(\mathbf{A}, \mathfrak{F}^{(i)})$ -integrable (i=1,2), if it is $(\mathbf{A}, \mathfrak{F}^{(1)} + \mathfrak{F}^{(2)})$ -integrable, it is $(\mathbf{A}, \mathfrak{F}^{(1)} \vee \mathfrak{F}^{(2)})$ -integrable. The converse is true. And $(\mathbf{A}, \mathfrak{F}^{(1)} + \mathfrak{F}^{(2)}) \int_{0}^{1} f(x) dx = (\mathbf{A}, \mathfrak{F}^{(1)} \vee \mathfrak{F}^{(2)}) \int_{0}^{1} f(x) dx$.

When $h^{(1)}(x)$ and $h^{(2)}(x)$ are both non-negative and Lebesgue integrable, we have following formulae,

$$(1) \int_{(x;|f(x)| \ge h^{(1)}(x) \lor h^{(2)}(x))} h^{(1)}(x) \lor h^{(2)}(x) dx \le \sum_{i} \int_{(x;|f(x)| \ge h^{(2)}(x))} h^{(i)}(x) dx \int_{(x;|f(x)| \ge h^{(i)}(x) \land h^{(2)}(x))} h^{(1)}(x) \land h^{(2)}(x) dx \le \sum_{i} \int_{(x;|f(x)| \ge h^{(2)}(x))} h^{(i)} dx,$$

$$(2) \sum_{i} \int_{(x;|f(x)| \ge h^{(i)}(x))} h^{(i)}(x) dx \le \int_{(x;|f(x)| \ge h^{(1)}(x) \lor h^{(2)}(x))} h^{(1)}(x) \lor h^{(2)}(x) dx + \int_{(x;|f(x)| \ge h^{(1)}(x) \land h^{(2)}(x))} h^{(1)}(x) \land h^{(2)}(x) dx,$$

(3)
$$\sum_{i} \int_{0}^{1} [f(x)]_{h^{(i)}} dx = \int_{0}^{1} [f(x)]_{h^{(1)} \vee h^{(2)}} dx + \int_{0}^{1} [f(x)]_{h^{(1)} \wedge h^{(2)}} dx.$$

Then, we have the following proposition 8.

Proposition 8. (1) If a function of $\mathfrak{M}[0, 1]$ satisfies the condition [a] with respect to $\mathfrak{H}^{(i)}$ (i=1,2), it also satisfies [a] with respect to $\mathfrak{H}^{(1)} \vee \mathfrak{H}^{(2)}$ and $\mathfrak{H}^{(1)} \wedge \mathfrak{H}^{(2)}$. And the converse is true. (2) If f(x) is integrable in the three senses of $(\mathbf{A}, \mathfrak{H}^{(1)})$ -, $(\mathbf{A}, \mathfrak{H}^{(2)})$, $(\mathbf{A}, \mathfrak{H}^{(1)} \vee \mathfrak{H}^{(2)})$ - and $(\mathbf{A}, \mathfrak{H}^{(1)} \wedge \mathfrak{H}^{(2)})$ -integral, it is integrable in the other sense, and $\sum_{i} (\mathbf{A}, \mathfrak{H}^{(i)}) \int_{0}^{1} f(x) dx = (\mathbf{A}, \mathfrak{H}^{(1)} \vee \mathfrak{H}^{(2)}) \int_{0}^{1} f(x) dx + (\mathbf{A}, \mathfrak{H}^{(1)} \wedge \mathfrak{H}^{(2)}) \int_{0}^{1} f(x) dx$. In the special case, when $\{I_n\}$ is a sequence of measurable sets satisfying (1) $I_1 \subseteq I_2 \cdots \subseteq [0, 1]$ and (2) $\lim_{n \to \infty} \max I_n = 1, h_n(x) = n \text{ in } I_n \text{ and } = 0 \text{ in } I_n^c$. In this case, we call the $(\mathbf{A}, \mathfrak{H})$ -integral (\mathbf{A}, I_n) -integral.

Theorem 1. If f(x) is a function of $\mathfrak{M}[0, 1]$, there exists a sequence $\{I_n\}$ of measurable sets which satisfies above two conditions and (1) $n \max\{(x; |f(x)| \ge \alpha n) \cap I_n\} = o(1)$ for any $\alpha > 0$. (2) $\lim_{n \to \infty} \int_{I_n} [f(x)]_n dx$ exists. If this limit is finite, f(x) is (\mathbf{A}, I_n) -integrable in [0, 1].

Proof. At first, take a sequence $\{\varepsilon_n\}$ of monotone decreasing positive numbers tending to zero. For ε_1 , there is a measurable set I_1^* in which f(x) is bounded, and mes $I_1^* > 1 - \varepsilon_1$. Put $m_1^* = \left[\max_{x \in I_1^*} |f(x)|\right]^{1/2}$ +1 and $\tilde{I}_1 = I_1^*$. For ε_2 , we get I_2^* as same as I_1^* , and put m_2^* = max $\left\{ m_1^*, \left[\max_{x \in I_2^*} |f(x)| \right] + 1 \right\}$ and $\tilde{I}_2 = \tilde{I}_1 \cup I_2^*$. In the same manner, construct $\{m_k^*\}$ and $\{I_k\}$, and let $\{\alpha_k\}$ be a sequence of positive numbers monotone increasing to infinite and $\alpha_1 = 1$. For any $\alpha > 0$, $k(\alpha)$ be the smallest s such that $[\alpha_s] > \frac{1}{\alpha}$, $|f(x)| < m_k^*$ in I_k when $k > k(\alpha)$. Put \tilde{m}_k = $[\alpha_k m_k^*]$, when $k > k(\alpha)$, mes $\{(x; |f(x)| \ge \alpha m_k) \cap I_k\} = 0$ since $\alpha \tilde{m}_k > m_k$. When $\tilde{m}_k \leq m < \tilde{m}_{k+1}$, put $I'_m = \tilde{I}_k$, $m \max\{(x; |f(x)| \geq \alpha m) \cap I'_m\} = 0$ for $m > \tilde{m}_{k(\alpha)}$. We easily get a sub-sequence $\{m_p\}$ of integers such that $\lim_{p \to \infty} \int_{I'_{m_p}} [f(x)]_{m_p} dx \text{ exists.} \quad \text{When } m_p \leq n < m_{p+1}, \text{ put } I_n = I'_{m_p}, \text{ then}$ $\left| \int_{I'_{m_p}} [f(x)]_{m_p} dx - \int_{I_n} [f(x)]_n dx \right| \leq n \max \{ (x; |f(x)| \geq m_p) \cap I'_{m_p} \} = 0$ for $m_p \ge \tilde{m}_{k(1)}$. It is obvious that $n \max\{(x; |f(x)| \ge \alpha n) \cap I_n\} = o(1)$ for $\alpha > 0.$ (Q.E.D.)

Corollary. If f(x) and g(x) are in $\mathfrak{M}[0, 1]$, there is a sequence

No. 3]

¹⁾ [x] is the integral part of x.

 $\{I_n\}$ of measurable sets fulfiling the theorem with respect to f(x) and g(x).

If f(x) is in $\mathfrak{M}[0,1]$ and not Lebesgue integrable, we have a problem, for given c, whether we can construct an (\mathbf{A}, I_n) -integral by which f(x) is integrable and $(\mathbf{A}, I_n) \int_0^1 f(x) dx = c$. This problem is not perfectly solved, but we get the following theorem.

Theorem 2. If f(x) of $\mathfrak{M}[0, 1]$ satisfies $\int_{0}^{1} f^{+}(x)dx = \int_{0}^{1} f^{-}(x)dx^{2} dx = \infty$ = ∞ and c is given, there is $\mathfrak{H} \equiv \{h_{n}(x)\}$ such that f(x) is $(\mathbf{A}, \mathfrak{H})$ -integrable and $(\mathbf{A}, \mathfrak{H}) \int_{0}^{1} f(x)dx = c$.

Proof. By the proof of Theorem 1, we have two sequences $\{I_m^+\}$ and $\{I_m\}$, of measurable sets and integers $m(\alpha)$ for $\alpha > 0$, that satisfy $\lim I_m^+ = 1$ and $\lim I_m^- = 1$, $\max\{(x; f^+(x) \ge \alpha m) \cap I_m^+\} = 0$ and $\max\{(x; f^-(x) \ge \alpha m) \cap I_m^+\} = 0$ $\overset{\scriptstyle m \to \infty}{\geq} \overset{\scriptstyle m}{\alpha} \overset{\scriptstyle m}{m} \cap I_m^{-} = \overset{\scriptstyle m \to \infty}{0} \text{ for } m > m(\alpha) \text{ and } \lim_{\scriptstyle m \to \infty} \int_{I_m^+ \cap I_m^-} [f(x)]_m dx \text{ exists. Put the}$ limit c'. When c' is finite, put d=c-c' and suppose d>0, then there are an integer m_1 and a measurable set J_{m_1} satisfying $J_{m_1} \subseteq I_{m_1}$ and $\int_{I_{m_1}^{-}} [f^{-}(x)]_{m_1} dx - d = \int_{J_{m_1}^{-} \setminus J_{m_1}} [f^{-}(x)]_{m_1} dx. \quad \text{Take} \quad m_2 \text{ so large that}$ $\int_{I_{m_2}^- \setminus I_{m_1}^-} [f^-(x)]_{m_2} dx > d$, there is a measurable set J_{m_2} satisfying $I_{m_2}^- \setminus I_{m_1}^ \supseteq J_{m_2} \text{ and } \int_{\left(I_{m_2}^- \setminus I_{m_1}^-\right) \setminus J_{m_2}} [f^-(x)]_{m_2} dx = \int_{I_{m_2}^- \setminus I_{m_1}^-} [f^-(x)]_{m_2} dx - d.$ Continue this process, we can construct a sequence $\{J_{m_k}\}$. When $m_k \leq n < m_{k+1}$, we define $I_n = I_n^+ \cap (I_n^- \setminus J_{m_k})$ then $\lim_{n \to \infty} \int_{I_n} [f(x)]_n dx = c' - d = c$. When c' is infinite, we suppose $c' = \infty$ and c > 0. There is an integer N satisfying $\int_{I_m^+} [f^+(x)]_m dx > \int_{I_m^-} [f^-(x)]_m dx \text{ for } m \ge N \text{ then we can find a sequence } \{m_k\}$ satisfying $\int_{I_{m_{k-1}}^{-}} [f^{-}(x)]_{m_{k-1}} dx < \int_{I_{m_{k-1}}^{+}} [f^{+}(x)]_{N+k} dx - c \leq \int_{I_{m_{k}}^{-}} [f^{-}(x)]_{m_{k}} dx.$ Since $\int_{I_{m_k-1}^-} [f^-(x)]_{m_k-1} dx = \int_{I_{m_k-1}^-} [f^-(x)]_{m_k} dx$ for $m_k \ge m(1)$, there is a sequence $\{I_{m_k}^-\}$ of measurable sets satisfying $\int_{I_{n+k}^+} [f^+(x)]_{N+k} dx - c$ $= \int_{\tilde{I}_{m_k}} [f^-(x)]_{m_k} dx \text{ and } I_{m_{k-1}} \subseteq \tilde{I}_{m_k} \subseteq I_{m_k}. \text{ If } n < N, h_n(x) = 0 \text{ and if } n \ge N,$ $h_n(x) = n$ in $I_n^+ \setminus I_{m_n - N}^-$, $= m_{n-N}$ in $I_{m_n - N}^-$ and = 0 otherwise. Then for sufficiently large n, $\int_{(x;|f(x)|\geq \alpha h n(x))} h_n(x) dx \leq n \max \{(x; f^+(x)\geq \alpha n) \cap I_n^+\}$

2) $f^+(x)$ is the non-negative part of f(x) and $f^-(x)=f^+(x)-f(x)$.

162

+
$$m_{n-N}$$
 mes { $(x; f^{-}(x) \ge \alpha m_{n-N}) \cap I^{-}_{m_{n-N}}$ }=0 and $\int_{0}^{1} [f(x)]_{h_{n}} dx = c.$
(Q.E.D.)

Corollary. If a function is integrable by any (\mathbf{A}, I_n) -integral, it is Lebesgue integrable.

We get a theorem which is an extension of the Lebesgue's convergence theorem.

Theorem 3. When a sequence $\{f_m(x)\}$ of $(\mathbf{A}, \mathfrak{H})$ -integrable functions converges to f(x) in measure, if $(1) \int_{(x; |f_m(x)| \ge \alpha h_n(x))} h_n(x) dx$ = o(1) uniformly in $m \ge 0$ for each $\alpha > 0$ and $(2) \lim_{n \to \infty} \int_0^1 [f_m(x)]_{h_n} dx$ $= (\mathbf{A}, \mathfrak{H}) \int_0^1 f_m(x) dx$ uniformly in $m \ge 0$, then f(x) is $(\mathbf{A}, \mathfrak{H})$ -integrable and $(\mathbf{A}, \mathfrak{H}) \int_0^1 f(x) dx = \lim_{m \to \infty} (\mathbf{A}, \mathfrak{H}) \int_0^1 f_m(x) dx$.

D.E. Menshov showed, in [5], that for any function of $\mathfrak{M}[0,1]$ there exists a trigonometric series which converges to the function almost everywhere. So we need to consider the relation between Fourier coefficients and integrals. Let $\{\phi_n(x)\}_{n=1,2,\ldots}$ be an orthonormal system in [0, 1]. And we assume that $\phi_0(x) \equiv 1$ and for any l and m there is n satisfying $\phi_l(x)\phi_m(x) = \phi_n(x)$ almost everywhere.

Theorem 4. If $\sum_{n=0}^{\infty} c_n \phi_n(x) = f(x)$ in measure, for any $\alpha > 0$ $\int_{(x;|S_m(x)| \ge \alpha h_k(x))} h_k(x) dx = o(1)$ uniformly in $m \ge 0$ and $\int_{(x;|S_m(x)| \ge h_k(x))} XS_m(x) \phi_n(x) dx = o(1)$ uniformly in $m \ge n$, where $S_m(x) = \sum_{k=0}^{m} c_k \phi_k(x)$, then $f(x) \phi_n(x)$ is (A, \mathfrak{H})-integrable and $c_n = (\mathbf{A}, \mathfrak{H}) \int_0^1 f(x) \phi_n(x) dx$. Corollary. $\sum_{n=0}^{\infty} c_n \phi_n(x) = 0$ in measure and $\int_{(x;|S_m(x)| \ge h_k(x))} S_m(x) \phi_n(x) dx$ = o(1) uniformly in $m \ge n$, then $c_n = 0$.

References

- [1] Tichmarsh, E. C.: On conjugate functions. PLMS, 29, 49-80 (1929).
- [2] Kolmogorov, A. N.: Fundamental Concepts in the Theory of Probability (in Russian). M-L, ONTI (1936).
- [3] K. Kunugi: Sur une généralisation de l'intégrale. Fundamental and Applied Aspects of Math. (to be published by Res. Inst. of Applied Electricity, Hokkaido Univ.), 1-30 (1959).
- [4] Yamagata, H.: Singular cut off process and Lorentz properties. PJA, 41, 547-552 (1965).
- [5] Men'shov, D. E.: Sur la représentation des fonctions mesurables par des séries trigonometriques. MC, 9 (51), 667-692 (1941).