37. On Generalized (A).integrals. I

By Kaoru Yoneda
University of Osaka Prefecture

(Comm. by Kinjirô Kunugi, m. J. A., March 12, 1969)

1. Introduction. To consider conjugate functions E.C. Tichmarsh introduced, in [1], the (Q)-integral. We say that $f(x)$ is (Q)-integrable in $[a, b]$ when there exists $\lim _{n \rightarrow \infty} \int_{a}^{b}[f(x)]_{n} d x$ and it is finite, and the limit is denoted by $(Q) \int_{a}^{b} f(x) d x$. But the (Q)-integral does not possess the additive property of integral. A.N. Kolmogorov showed, in [2], that if (Q)-integrable functions $f_{i}(x)(i=1,2)$ satisfies the condition: n mes $\left(x ;\left|f_{i}(x)\right| \geqq n\right)=o(1)(i=1,2)$, for any $\alpha_{i}(i=1,2), \sum_{i} \alpha_{i} f_{i}(x)$ is also (Q)-integrable and $(Q) \int_{a}^{b} \sum_{i} \alpha_{i} f_{i}(x) d x=\sum_{i} \alpha_{i}(Q) \int_{a}^{b} f_{i}(x) d x$. If a (Q)integrable function $f(x)$ satisfies the above condition, we say that $f(x)$ is (A)-integrable in [$a, b]$, and give a value of the (A)-integral by that of the (Q)-integral. A Lebesgue integrable function is (A)-integrable and both integrals have the same value. But there exists a function which is not (A)-integrable, for example $g(x)=(-1)^{n} / x$ where $1 / n$ $+1<x \leqq 1 / n(n=1,2, \cdots)$ and $g(0)=0$. K. Kunugi has proposed in [3] the notion of the generalized (E.R.)-integral by which this $g(x)$ is integrable in $[0,1]$.

In this paper, we state a generalization of the (A)-integral.
2. The generalization of (A)-integral. In this paper, consider only real valued functions which are measurable and almost everywhere finite in $[0,1]$ and denote the set of these functions by $\mathbb{M}[0,1]$. Let $\mathfrak{K} \equiv\left\{h_{n}(x)\right\}_{n=1,2} \ldots$.. be a sequence of non-negative Lebesgue integrable functions tending to infinite almost everywhere in [0, 1].

Definition of the (A, $\mathfrak{s})$-integral. We say that $f(x)$ of $\mathfrak{M}[0,1]$ is (A, $\mathfrak{S})$-integrable in $[0,1]$ if $f(x)$ satisfies following $[a]$ and $[b]$:
[a] $\int_{\left(x ;|f(x)| \geq \alpha h_{n}(x)\right)} h_{n}(x) d x=o(1)$ for any $\alpha>0$,
[b] $\quad \lim _{n \rightarrow \infty} \int_{0}^{1}[f(x)]_{h_{n}} d x$ exists and is finite, where $[f(x)]_{h_{n}}=f(x)$ for $|f(x)|<h_{n}(x)$ and $=0$ for $|f(x)| \geqq h_{n}(x)$.

The value of the integral is given by this limit and we denote it $b y(\mathbf{A}, \mathfrak{S}) \int_{0}^{1} f(x) d x$.

Especially put $h_{n}(x)=n u(x)$, where $u(x)$ is positive and Lebesgue
integrable, we can replace [a] by following [α^{\prime}]: [$\left.\alpha^{\prime}\right] n \int_{(x ; \mid f(x) \geqq \geqq n u(x))} u(x) d x$ $=o(1)$. The generalization in this form has already been gotten by H. Yamagata [4].

The (A, $\mathfrak{S}_{\text {g }}$)-integral has a few properties which the (A)-integral has.

Proposition 1. The $\left(\mathbf{A}, \mathfrak{S}_{2}\right)$-integral possess the additive property of integral.

Proposition 2. Let $\left\{f_{n}(x)\right\}$ be a sequence of (A, $\left.\mathfrak{F}\right)$-integrable functions satisfying (1) $f_{1}(x) \leqq f_{2}(x) \leqq \cdots$ and (2) (A, $\left.\mathfrak{S}_{2}\right) \int_{0}^{1} f_{n}(x) d x$ are uniformly bounded, and put $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$, then $f(x)$ is $(\mathbf{A}, \mathfrak{F})$ integrable and $(\mathbf{A}, \mathfrak{S}) \int_{0}^{1} f(x) d x=\lim _{n \rightarrow \infty}\left(\mathbf{A}, \mathfrak{S}_{2}\right) \int_{0}^{1} f_{n}(x) d x$.

We introduce some notations as follows.
(1) When there are two integrals, X integral and Y integral, if any X integrable function is Y integrable and both integrals have the same value, we write $(X) \triangleleft(Y)$, and if the converse is also true, we write $(X)=(Y)$.
(2) $p(x) \vee q(x) \equiv \max (p(x), q(x)), p(x) \wedge q(x) \equiv \min (p(x), q(x))$. When $\mathfrak{S}^{(i)} \equiv\left\{h_{n}^{(i)}(x)\right\}_{n=1,2, \ldots} \quad(i=1,2)$,
(3) $\mathfrak{S e}^{(1)} \vee \mathscr{S C}^{(2)} \equiv\left\{h_{n}^{(1)}(x) \vee h_{n}^{(2)}(x)\right\}, \mathfrak{S}^{(1)} \wedge \mathfrak{S}^{(2)} \equiv\left\{h_{n}^{(1)}(x) \wedge h_{n}^{(2)}\right\}$ and $c_{1} \mathfrak{S}_{c}^{(1)}+c_{2} 5_{\varepsilon}^{(2)} \equiv\left\{c_{1} h_{n}^{(1)}+c_{2} h_{n}^{(2)}\right\}$ where $c_{i}>0(i=1,2)$.

Proposition 3. Denote the Lebesgue integral by L, we have $(L) \triangleleft(\mathbf{A}, \mathfrak{F})$ for any $\mathfrak{S c}$.

Proposition 4. A non-negative (A, $\mathfrak{F})$-integrable function is Lebesgue integrable.

Proposition 5. If \mathfrak{K}_{s} is a sub-sequence of \mathfrak{F}, we have (A, $\left.\mathfrak{5}\right)$ $\triangleleft\left(\mathbf{A}, \mathfrak{F}_{s}\right)$.

Proposition 6. For any positive number $c,\left(\mathbf{A}, \mathfrak{S}_{2}\right)=\left(\mathbf{A}, c 5_{2}\right)$.
Proposition 7. When $f(x)$ is $\left(\mathbf{A}, \mathfrak{S}_{S_{2}}{ }^{(i)}\right)$-integrable $(i=1,2)$, if it is (A, $\left.\mathfrak{S}^{(1)}+\mathscr{S C}^{(2)}\right)$-ntegrable, it is $\left(\mathbf{A}, \mathfrak{S}^{(1)} \vee \mathfrak{S}_{\mathrm{C}}{ }^{(2)}\right)$-integrable. The converse is true. \quad And $\left(A, \mathfrak{S}_{\mathrm{c}}{ }^{(1)}+\mathscr{S}^{(2)}\right) \int_{0}^{1} f(x) d x=\left(\mathbf{A}, \mathfrak{S}_{2}^{(1)} \vee \mathscr{S}_{c}^{(2)}\right) \int_{0}^{1} f(x) d x$.

When $h^{(1)}(x)$ and $h^{(2)}(x)$ are both non-negative and Lebesgue integrable, we have following formulae,
(1) $\int_{\left(x ; \mid f(x) \geqq \geqq h^{(1)}(x) \vee h^{(2)}(x)\right)} h^{(1)}(x) \vee h^{(2)}(x) d x \leqq \sum_{i} \int_{\left(x ;|f(x)| \geqq h^{(2)}(x)\right)} h^{(i)}(x) d x$ $\int_{\left(x ;|f(x)| \geqq h^{(i)}(x) \wedge h^{(2)}(x)\right)} h^{(1)}(x) \wedge h^{(2)}(x) d x \leqq \sum_{i} \int_{\left(x ; \mid f(x) \geqq \geqq h^{(2)}(x)\right)} h^{(i)} d x$,
(2) $\sum_{i} \int_{(x ;|f(x)| \geqq h(i)(x))} h^{(i)}(x) d x \leqq \int_{\left(x ;|f(x)| \geqq h^{(1)}(x) \vee h^{(2)}(x)\right)} h^{(1)}(x) \vee h^{(2)}(x) d x$ $+\int_{\left(x ;|f(x)| \geqq h^{(1)}(x) \wedge h^{(2)(x))}\right.} h^{(1)}(x) \wedge h^{(2)}(x) d x$,
(3) $\sum_{i} \int_{0}^{1}[f(x)]_{h^{(i)}} d x=\int_{0}^{1}[f(x)]_{h^{(1)} \vee h^{(2)}} d x$

$$
+\int_{0}^{1}[f(x)]_{h^{(1)} \wedge h(2)} d x
$$

Then, we have the following proposition 8.
Proposition 8. (1) If a function of $\mathfrak{M}[0,1]$ satisfies the condition [a] with respect to ${\underset{S ®}{(})}^{(i)}(i=1,2)$, it also satisfies [a] with respect to $\mathfrak{S e}^{(1)} \vee \mathscr{S}^{(2)}$ and $\mathfrak{S e}^{(1)} \wedge \mathfrak{S}_{2}^{(2)}$. And the converse is true. (2) If $f(x)$ is integrable in the three senses of $\left(\mathbf{A}, \mathfrak{S}^{(1)}\right)-,\left(\mathbf{A}, \mathfrak{S}^{(2)}\right),\left(\mathbf{A}, \mathfrak{S}^{(1)} \bigvee \mathfrak{S}_{2}^{(2)}\right)$ - and (A, $\mathfrak{S}_{\mathrm{C}}^{(1)} \wedge \mathfrak{S}_{2}^{(2)}$)-integral, it is integrable in the other sense, and
 In the special case, when $\left\{I_{n}\right\}$ is a sequence of measurable sets satisfying (1) $I_{1} \subseteq I_{2} \cdots \subseteq[0,1]$ and (2) $\lim _{n \rightarrow \infty} \operatorname{mes} I_{n}=1, h_{n}(x)=n$ in I_{n} and $=0$ in I_{n}^{c}. In this case, we call the (A, $\left.\mathscr{S}_{2}\right)$-integral (\mathbf{A}, I_{n})-integral.

Theorem 1. If $f(x)$ is a function of $\mathfrak{M}[0,1]$, there exists a sequence $\left\{I_{n}\right\}$ of measurable sets which satisfies above two conditions and (1) $n \operatorname{mes}\left\{(x ;|f(x)| \geqq \alpha n) \cap I_{n}\right\}=o(1)$ for any $\alpha>0$. (2) $\lim _{n \rightarrow \infty} \int_{I_{n}}[f(x)]_{n} d x$ exists. If this limit is finite, $f(x)$ is $\left(\mathbf{A}, I_{n}\right)$ integrable in $[0,1]$.

Proof. At first, take a sequence $\left\{\varepsilon_{n}\right\}$ of monotone decreasing positive numbers tending to zero. For ε_{1}, there is a measurable set I_{1}^{*} in which $f(x)$ is bounded, and mes $I_{1}^{*}>1-\varepsilon_{1}$. Put $m_{1}^{*}=\left[\max _{x \in I_{1}{ }^{*}}|f(x)|\right]^{1)}$ +1 and $\tilde{I}_{1}=I_{1}^{*}$. For ε_{2}, we get I_{2}^{*} as same as I_{1}^{*}, and put m_{2}^{*} $=\max \left\{m_{1}^{*},\left[\max _{x \in I_{2^{*}}}|f(x)|\right]+1\right\}$ and $\tilde{I}_{2}=\tilde{I}_{1} \cup I_{2}^{*}$. In the same manner, construct $\left\{m_{k}^{*}\right\}$ and $\left\{I_{k}\right\}$, and let $\left\{\alpha_{k}\right\}$ be a sequence of positive numbers monotone increasing to infinite and $\alpha_{1}=1$. For any $\alpha>0, k(\alpha)$ be the smallest s such that $\left[\alpha_{s}\right]>\frac{1}{\alpha},|f(x)|<m_{k}^{*}$ in I_{k} when $k>k(\alpha)$. Put \tilde{m}_{k} $=\left[\alpha_{k} m_{k}^{*}\right]$, when $k>k(\alpha)$, mes $\left\{\left(x ;|f(x)| \geqq \alpha m_{k}\right) \cap I_{k}\right\}=0$ since $\alpha \tilde{m}_{k}>m_{k}$. When $\tilde{m}_{k} \leqq m<\tilde{m}_{k+1}$, put $I_{m}^{\prime}=\tilde{I}_{k}, m \operatorname{mes}\left\{(x ;|f(x)| \geqq \alpha m) \cap I_{m}^{\prime}\right\}=0$ for $m>\widetilde{m}_{k(\alpha)}$. We easily get a sub-sequence $\left\{m_{p}\right\}$ of integers such that $\lim _{p \rightarrow \infty} \int_{I_{m_{p}}^{\prime}}[f(x)]_{m_{p}} d x$ exists. When $m_{p} \leqq n<m_{p+1}$, put $I_{n}=I_{m_{p}}^{\prime}$, then $\left|\int_{I_{m_{p}}^{\prime}}[f(x)]_{m_{p}} d x-\int_{I_{n}}[f(x)]_{n} d x\right| \leqq n \operatorname{mes}\left\{\left(x ;|f(x)| \geqq m_{p}\right) \cap I_{m_{p}}^{\prime}\right\}=0 \quad$ for $m_{p}>\tilde{m}_{k(1)}$. It is obvious that n mes $\left\{(x ;|f(x)| \geqq \alpha n) \cap I_{n}\right\}=o(1)$ for $\alpha>0$.
(Q.E.D.)

Corollary. If $f(x)$ and $g(x)$ are in $\mathfrak{M}[0,1]$, there is a sequence

1) $[x]$ is the integral part of x.
$\left\{I_{n}\right\}$ of measurable sets fulfiling the theorem with respect to $f(x)$ and $g(x)$.

If $f(x)$ is in $\mathfrak{M}[0,1]$ and not Lebesgue integrable, we have a problem, for given c, whether we can construct an (A, I_{n})-integral by which $f(x)$ is integrable and $\left(\mathbf{A}, I_{n}\right) \int_{0}^{1} f(x) d x=c$. This problem is not perfectly solved, but we get the following theorem.

Theorem 2. If $f(x)$ of $\mathfrak{M}[0,1]$ satisfies $\int_{0}^{1} f^{+}(x) d x=\int_{0}^{1} f^{-}(x) d x^{2)}$ $=\infty$ and c is given, there is $\mathfrak{S} \equiv\left\{h_{n}(x)\right\}$ such that $f(x)$ is $(\mathbf{A}, \mathfrak{K})$-integrable and (A, $\mathfrak{F}) \int_{0}^{1} f(x) d x=c$.

Proof. By the proof of Theorem 1, we have two sequences $\left\{I_{m}^{+}\right\}$ and $\left\{I_{m}^{-}\right\}$, of measurable sets and integers $m(\alpha)$ for $\alpha>0$, that satisfy $\lim _{m \rightarrow \infty} I_{m}^{+}=1$ and $\lim _{m \rightarrow \infty} I_{m}^{-}=1, \operatorname{mes}\left\{\left(x ; f^{+}(x) \geqq \alpha m\right) \cap I_{m}^{+}\right\}=0$ and $\operatorname{mes}\left\{\left(x ; f^{-}(x)\right.\right.$ $\left.\geqq\langle\dot{m}) \cap I_{m}^{-}\right\}=0$ for $m>m(\alpha)$ and $\lim _{m \rightarrow \infty} \int_{I_{m}^{+} \cap I_{m}^{-}}[f(x)]_{m} d x$ exists. Put the limit c^{\prime}. When c^{\prime} is finite, put $d=c-c^{\prime}$ and suppose $d>0$, then there are an integer m_{1} and a measurable set $J_{m_{1}}$ satisfying $J_{m_{1}} \subseteq I_{m_{1}}^{-}$and $\int_{I_{m_{1}}^{-}}\left[f^{-}(x)\right]_{m_{1}} d x-d=\int_{J_{m_{1}}^{-} \backslash J_{m_{1}}}\left[f^{-}(x)\right]_{m_{1}} d x$. Take m_{2} so large that $\int_{I_{m_{2}}^{-} \backslash I_{m_{1}}^{-}}\left[f^{-}(x)\right]_{m_{2}} d x>d$, there is a measurable set $J_{m_{2}}$ satisfying $I_{m_{2}}^{-} \backslash I_{m_{1}}^{-}$ $\supseteq J_{m_{2}}$ and $\int_{\left(I_{m_{2}}^{-} \backslash I_{m_{1}}^{-}\right) \backslash J_{m_{2}}}\left[f^{-}(x)\right]_{m_{2}} d x=\int_{I_{m_{2}}^{-} \backslash I_{m_{1}}^{-}}\left[f^{-}(x)\right]_{m_{2}} d x-d$. Continue this process, we can construct a sequence $\left\{J_{m_{k}}\right\}$. When $m_{k} \leqq n<m_{k+1}$, we define $I_{n}=I_{n}^{+} \cap\left(I_{n}^{-} \backslash J_{m_{k}}\right)$ then $\lim _{n \rightarrow \infty} \int_{I_{n}}[f(x)]_{n} d x=c^{\prime}-d=c$. When c^{\prime} is infinite, we suppose $c^{\prime}=\infty$ and $c>0$. There is an integer N satisfying $\int_{I_{m}^{+}}\left[f^{+}(x)\right]_{m} d x>\int_{I_{m}^{-}}\left[f^{-}(x)\right]_{m} d x$ for $m \geqq N$ then we can find a sequence $\left\{m_{k}\right\}$ satisfying $\int_{I_{m_{k}-1}^{-}}\left[f^{-}(x)\right]_{m_{k}-1} d x<\int_{I_{N+k}^{+}}\left[f^{+}(x)\right]_{N+k} d x-c \leqq \int_{I_{m_{k}}^{-}}\left[f^{-}(x)\right]_{m_{k}} d x$. Since $\int_{I_{m_{k}-1}}\left[f^{-}(x)\right]_{m_{k}-1} d x=\int_{I_{m_{k}-1}^{-}}\left[f^{-}(x)\right]_{m_{k}} d x$ for $m_{k} \geqq m(1)$, there is a sequence $\left\{I_{m_{k}}^{-}\right\}$of measurable sets satisfying $\int_{I_{N+k}^{+}}\left[f^{+}(x)\right]_{N+k} d x-c$ $=\int_{\tilde{I}_{m_{k}}^{-}}\left[f^{-}(x)\right]_{m_{k}} d x$ and $I_{m_{k^{-1}}} \subseteq \tilde{I}_{\bar{m}_{k}} \subseteq I_{m_{k}}^{-} . \quad$ If $n<N, h_{n}(x)=0$ and if $n \geqq N$, $h_{n}(x)=n$ in $I_{n}^{+} \backslash I_{m_{n-N}}^{-},=m_{n-N}$ in $I_{m_{n-N}}^{-}$and $=0$ otherwise. Then for

[^0]$+m_{n-N} \operatorname{mes}\left\{\left(x ; f^{-}(x) \geqq \alpha m_{n-N}\right) \cap I_{m_{n-N}}^{-}\right\}=0$ and $\int_{0}^{1}[f(x)]_{h_{n}} d x=c$.
(Q.E.D.)

Corollary. If a function is integrable by any (A, I_{n})-integral, it is Lebesgue integrable.

We get a theorem which is an extension of the Lebesgue's convergence theorem.

Theorem 3. When a sequence $\left\{f_{m}(x)\right\}$ of (A, $\left.\mathfrak{F}\right)$-integrable functions converges to $f(x)$ in measure, if (1) $\int_{\left(x ; \mid f_{m}(x) \geqq \geqq \alpha h_{n}(x)\right)} h_{n}(x) d x$ $=o(1)$ uniformly in $m \geqq 0$ for each $\alpha>0$ and (2) $\lim _{n \rightarrow \infty} \int_{0}^{1}\left[f_{m}(x)\right]_{h_{n}} d x$ $=(\mathbf{A}, \mathfrak{F}) \int_{0}^{1} f_{m}(x) d x$ uniformly in $m \geqq 0$, then $f(x)$ is $(\mathbf{A}, \mathfrak{S})$-integrable and $(\mathbf{A}, \mathfrak{S}) \int_{0}^{1} f(x) d x=\lim _{m \rightarrow \infty}\left(\mathbf{A}, \mathfrak{S}_{2}\right) \int_{0}^{1} f_{m}(x) d x$.
D.E. Menshov showed, in [5], that for any function of $\mathfrak{M}[0,1]$ there exists a trigonometric series which converges to the function almost everywhere. So we need to consider the relation between Fourier coefficients and integrals. Let $\left\{\phi_{n}(x)\right\}_{n=1,2, \ldots}$ be an orthonormal system in $[0,1]$. And we assume that $\phi_{0}(x) \equiv 1$ and for any l and m there is n satisfying $\phi_{l}(x) \phi_{m}(x)=\phi_{n}(x)$ almost everywhere.

Theorem 4. If $\sum_{n=0}^{\infty} c_{n} \phi_{n}(x)=f(x)$ in measure, for any $\alpha>0$ $\int_{\left(x ; \mid S_{m}(x) \geq \alpha h_{k}(x)\right)} h_{k}(x) d x=o(1)$ uniformly in $m \geqq 0$ and $\int_{\left(x ;\left|S_{m}(x)\right| \geq h_{k}(x)\right)}$ $\times S_{m}(x) \phi_{n}(x) d x=o(1)$ uniformly in $m \geqq n$, where $S_{m}(x)=\sum_{k=0}^{m} c_{k} \phi_{k}(x)$, then $f(x) \phi_{n}(x)$ is $(\mathbf{A}, \mathfrak{F})$-integrable and $c_{n}=(\mathbf{A}, \mathfrak{F}) \int_{0}^{1} f(x) \phi_{n}(x) d x$.

Corollary. $\sum_{n=0}^{\infty} c_{n} \phi_{n}(x)=0$ in measure and $\int_{\left(x ; \mid S_{m}(x) \geq h_{k}(x)\right)} S_{m}(x) \phi_{n}(x) d x$ $=o(1)$ uniformly in $m \geqq n$, then $c_{n}=0$.

References

[1] Tichmarsh, E. C.: On conjugate functions. PLMS, 29, 49-80 (1929).
[2] Kolmogorov, A. N.: Fundamental Concepts in the Theory of Probability (in Russian). M-L, ONTI (1936).
[3] K. Kunugi: Sur une généralisation de l'intégrale. Fundamental and Applied Aspects of Math. (to be published by Res. Inst. of Applied Electricity, Hokkaido Univ.), 1-30 (1959).
[4] Yamagata, H.: Singular cut off process and Lorentz properties. PJA, 41, 547-552 (1965).
[5] Men'shov, D. E.: Sur la représentation des fonctions mesurables par des séries trigonometriques. MC, 9 (51), 667-692 (1941).

[^0]: 2) $f^{+}(x)$ is the non-negative part of $f(x)$ and $f^{-}(x)=f^{+}(x)-f(x)$.
