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Abstract. Five periodic solutions with moderate eccentricities and
high inclinations for the three-dimensional restricted problem of three
bodies are found for cases of 3"2, 2" 1, and 4"1 of the mean motions
by expanding the disturbing functions by use of a high-speed computer.
The expansion with respect to the inclination is made by Tisserand’s
polynomials and that to the eccentricity is made by Newcomb operators
up to the tenth power. The periodic solutions found here correspond
to orbits, for which secular and long-periodic perturbations of orbital
elements except for the mean anomaly vanish. The existence of such
periodic orbits are verified by numerical integration method for a case
that the disturbing mass is 0.001.

1o Introduction. Equations of motion for three-dimensional
restricted problem of three bodies, that is, for an asteroid moving
under gravitational attractions of the Sun and Jupiter on a circular
orbit, are written in canonical form by use of the following Delaunay
variables"

L-k/-d-, l" the mean anomaly,
G-L/1-- e2, g" the argument of perihelion,
H-G cos i, h" the longitude of the ascending node, 1 )

D, minus the longitude of Jupiter,
where a., e, and i are, respectively, the semi-major axis, the eccentrici-
ty, and the orbital inclination to Jupiter’s orbital plane for the
asteroid, and k is the gravitational constant of Gauss. The units are
so chosen that the mass of the Sun and the mean motion and the semi-
major axis of Jupiter are unity.

Short-periodic terms which depend on and/or h can be eliminated
from the Hamiltonian by yon Zeipel’s transformation, for example,
and, therefore, the equations of motion are reduced to those of one
degree of freedom since L and H are constant after the transforma-
tion. Then the values of G can be derived as a function of g by solv-
ing the energy integral, and if the inclination is sufficiently high,
stationary solutions, in which G and g are constant, are found for 2g
=180.)

However, if the mean motion, e, of the asteroined is nearly eom-
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mensurable with Jupiter’s mean motion which is equal to 1, the degree
of freedom of the equations of motion can be reduced to two but not
to one by eliminating short-periodic terms since and h are not inde-
pendent for this case. For a commensurable case, in which the mean
motion is nearly equal to (p+q)/q with two integers p and q, the
equations of motion are conveniently expressed by the following
canonical variables

Xl--[(P-}-q) L--pH]/q, Y,---t, )
X--(L--H)/q, Y--(p+q)t-p-qffo, I ( 2 )
X-G-H, Y=g,

where 2, t, and are, respectively, the mean longitudes of the
asteroid and Jupiter and the longitude of the perihelion. The Hamil-
tonian F or these canonical variables is written as,

F=k(X-pX)-/2+X-(p+ q)X+ m’kR, ( 3 )
where m’ is the mass of Jupiter and R is the disturbing function.

Short-periodic terms which depend on Y in R can be eliminated
from the Hamiltonian by von Zeipel’s transformation which reduces
the equations to those o two degrees of reedom. Although they can
not be generally solved, stationary solutions, in which X and Y for
i=2 and 3 are constant, can be found. In this paper such particular
solutions are found by expanding the disturbing function by the high-
speed computer, HITAC 5020E at the Computer Center, the Univer-
sity of Tokyo.

2. Disturbing unctiono The disturbing unction R due to
Jupiter is written as

R=zl-l--r cos S, ( 4
where z/=/l/r2--2r cos S is the linear distance and S is the helio-
centric angular distance between the asteroid and Jupiter while r is
the heliocentric distance of the asteroid. When the eccentricity is
zero//- is expanded into a Fourier series with argument S, in which
the true anomaly is replaced by the mean anomaly, as,

-1--b0+ 2 b cos nS, ( 5 )

where b is Laplace coefficient which is a function o a. .Laplace co-
efficients and their Newcomb derivatives Dbn, where D is the differ-
ential operator a(d/da), can be computed by the method of Izsak and
Benima) when a is given.

The trigonometric function cos nS can be represented by a finite
sum of trigonometric terms with linear combination of 2, t, and 2/2 as
argument and with polynomials of sin (i/2) as coefficient by use of
Tisserand’s polynomials.) Then R for e-0 can be written as

R- b00+2 , b0 cos +2 ,, b,, cos (/(f--), ( 6 )
=1 tu=l=O
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where -2-t, p-2+t-2tg, and b is a linear function of b with
Tisserand’s polynomials as coefficients. The coefficients b0 and b0
take different orms because contributions from r cos S appear in these
two coefficients. These expressions are valid or any inclination.

The eccentricity, e, is introduced by use of Newcomb operators
which are polynomials of the differential operator D with polynomials

o/--,the coefficient o in (6), as coefficients. Newcomb operators
to include the eccentricity up to the tenth power are computed by the
method of Izsak et al. After these computations are made, the
disturbing function is expanded in the form,

10

R-- , Ccos[--]l+(--)--([+)t+2], (7)
j=-lO I

where C is a unction of a, e, and i and contains e : sinTM (i/2) as
a factor. Since the short-periodic terms can be eliminated, it is not
necessary to compute terms in (7) unless/ and satisfy the following
condition;

(p/q)(/z----])--p(/z+), or, qlu--(2p+q)+(p+q)]. ( 8 )
The computations are made for 3/2, 5/3, 2, 3, 4, and 5, for which the
upper limits of the eccentricity are, respectively, 0.18, 0.2, 0.3, 0.6,
0.62, and 0.62.

:}. Stationary solutions. Ater the short-periodic terms depend-
ing on Y are eliminated, the disturbing function is expressed as,

R- Bcos Y+2Y (9)
=-0 q

Stationary solutions are obtained by solving the equations,
dX_ 3F dY_ 3F--0, --0, (i--2, 3). (10)
dt Yi dt X

The last two equations are satisfied for Y=0 or 180 and 2Y--0 or
180

The expression of the third equation is

dY _(p+ q)_pk(X_pX)__m,k R
dt X

OR OR + O, (11)=(P+q)-pn+m’k P L
+(P+q)

G H
where the mean motion, n, is computed by na/= k. When e and i are
given, this equation is satisfied by changing the value of a or n by an
amount of order of m’.

The last equation is
dY_ _m,k R _--m’M R 0. (12)
dt OX OG

This equation has been solved by Jefferys and Standish) by a method
of numerical integration. The equation can be also solved by using

the expansion (9) o the disturbing function and the solutions are
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expressed as curves in (e,/)-plane when Y2 and Y are given. For
each pair of e and i on these curves the value of a is fixed so that the
equation (11) is satisfied.

Thus the stationary solutions have been found by the semi-analyt-
ical method as far as secular and long-periodic perturbations are con-
cerned.

4. Periodic solutions. However, if the short-periodic perturba-
tions are taken into consideration, X and Y (i=2, 3) are no more
constant but oscillate about the stationary values. For the stationary
solutions the longitude of the ascending node, and, therefore, the
orbital plane is moving even if the short-periodic perturbations are
not included. Therefore, the stationary solutions thus found for both
commensurable and non-commensurable cases are not usually periodic.

However, if the mean value of dY/dt, which is written as,
dYI_ F m,tc2( R R
d 3X1

-n--l--
L + G - 3H

(13)

is exactly equal to q/p, the short-periodic perturbations in all the
orbital elements take the same values as the initial ones after p re-

volutions of the asteroid. This condition is satisfied when the mean
values of 3R/3G and R/H vanish and that of n--m’k2(3R/3L) is
equal to q/p. Under these conditions the equations (11) and (12) are
satisfied and the longitude of the ascending node does not move if the
short-periodic perturbations are not included. Thus periodic solutions
of the third sorte studied by Poincar can be found by obtaining
stationary solutions which satisfy the above conditions.

The solutions for 3R/3H--O are also expressed as curves in (e, i)-
plane, and if two curves for 3R/3G- 0 and R/H 0 intersect there
exists a periodic solution. However, it is found that such periodic
solutions cannot be obtained for even values of q in n--(p-q)/p,
unless very eccentric orbits are considered. For n=4, 2, and 3/2 two
curves intersect, and, therefore, periodic solutions of the third sorte
have been found. The orbits corresponding to these periodic solutions
have been computed for m’=0.001 by a method of numerical integra-
tions, and osculating elements at the time of conjunction of Jupiter
and the asteroid for each of the periodic solutions are derived. They
are shown in Table I. Of these solutions the orbit IV is found by
purely numerical way.

For Y2-0 the conjunction always takes place when the asteroid
passes through the perihelion, and for Y2-180 it does when the
asteroid is at the aphelion. For III and V the conjunctions take place
at the aphelia, although the perihelia and aphelia are far from the
orbital plane of Jupiter as the arguments of perihelion for these orbits
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Table I. Osculating elements for conjunction

n e Y .Y
I
II
III
IV
V

4.000 136 90. 126 28 0.014 18889 0 180
3.999 005 88.674 31 0.113 9580 0 0
1.999 302 95.235 29 0.171 8233 180 180
1.498 002 69.617 81 0.426 5092 0 0
1.497 947 98.104 10 0.189 7712 180 180

are 90. The solution IV is very interesting since the aphelion of the
orbit is outside of Jupiter’s orbit as the aphelion distance is 1.09.
However, since the conjunction takes place always at the perihelion,
the asteroid never approaches very closely to Jupiter even for this
case. For all the solutions given in Table I the asteroid and Jupiter
cannot approach to each other very closely.
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