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1. Introduction and Theorems.
1.1. Definitions. Let a be a given series and s be its nth

partial sum. Let (p) be a sequence of real numbers such that p0--0,
Pn-P0+ Pl + + Pn :/: 0 for all n and P -oo asnc. I the sequence

1( 1 ) tn----- , Pn-S (n--l, 2, ...)
/=0

tends to a limit s as noo, then the series a is said to be (N, p)
summable to s. This method of summation is regular if and only if

(2) IpI<=AIPI or all n=>l and p/PO as noo.
k=O

Let f be an integrable function with period 2zr and its Fourier series be

(3) f(t)--ao+ n= (an cosnt+bn sin nt)--

We write (() (t) f(x/ t) + f(x- ) 2f(x).
1.2. E. Hille and J. D. Tamarkin [1] have applied the (N,

summation to Fourier series. Extending one o their theorems,
0. P. Vershney [2] has proved the ollowing

Theorem I. Suppose that the sequence (p) of real numbers
satisfies the conditions"
(4)

(5)

and

(6)

If
log (k+ 1)

for n>= 1,

for all n >= 1

for all n >= 1.

rt /(7) (t)=| ]9(u)]du-o|t/log=! as t-,O,
jo \ /

then the Fourier series of f is (N, Pn) summable to f(x).
On the other hand O. P. Vershney [3] proved the
Theorem IIo Let (p) be a positive non-increasing sequence.

Then the Fourier series of f satisfying the condition

( 1)(t)-- o 1/log - as t-O,
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is (N, p) summable at the point x, if and only if
P <_AP for all n>_ 1.

= k log (k+ 1)
We are going to prove a theorem containing both of above

theorems"
Theorem 1. Suppose that L(u) is a positive non-decreasing

function on the interval (0, oo), k/L(k) as k--. and du Ak
L(u) ---L(k)

for all k>_l and that the sequence (p) of real numbers satisfies the
condition

(8) klzlp] <AIP] for all

(i) If
(9) IPI <AIPI for all

= kL(k)=
then the Fourier series of f satisfying the condition

is (N, p) summable to f(x) at the point x.
(ii) I/ P0 for all n, then the condition (9) is a necessary and

sucient condition [or (N,p) summability of f satisfying the
condition (10).

If L(u)=log(u+l) in Theorem 1, his is a generalization
Theorems I and II.

The case L(u)- (log (u+ 1)) (0a 1) was treated by B.N. Sahney
[4] or f satisfying stronger condition.

The condition (8) implies
(11) nlPn] gA[Pn]L(n) and nlP+l gAlPlL(n) or all nl
since

i(n)

1.. We define a function p(u) on the interval (0, ) such that
p(n)-pn or every integer n0 and p(u) is linear at every non-integral

and is continuous in the whole interval. We put P(u)-.[ p(v)dvpoint U

for u0, then P(n)- p + 1

We have proved the following theorem [5], as a generalization of
the T. Singh theorem [6]"

Theorem III. If (p) is a positive sequence satisfying the condition

(12) k]Ap AP for all n1



No. 9] NSrlund Summability of Fourier Series 775

and if
(13) (t) o( p(1/t) P(1/t) ) as t-O,
then the Fourier series of f is (N, Pn) summable to f(x) at the point x.

We can generalize this theorem as follows"
Theorem 2. Suppose that (Pn) is a sequence of real numbers

satisfying the condition

(14) k lzlp <-__AIPn for all n>= 1,
k=l

then the Fourier series of f satisfying the condition (13)is (N, Pn)
summable to f(x) at the point x.

The condition (14) implies that nlPl <-_AIPI and np+] APn[
for all n 1.

2. Proof of Theorem 1. By (1), the nth NSrlund mean of the
Fourier series is

1 [ sin (k+ 1/2)tt= P- Jo (t) dt
=0 2 sin t/2

__
p,_ : (t)cos (n+ 1/2)t sin (n-k)t dt

Pn =0 2 sin t/2
1

Pn- (t)sin (n+ 1/2)t+
=0 2 sin t/2

cos (n-- k)t dt Un+.
We shall estimate u. We write h(t) (t) cos (n+ 1/2)t, then, by

(10 and (11)

Un
(2 sin t/2) =

Ape(I--cos (k+ 1/2)t)

--p(1-- cos t/2)+ p(1-- cos (n+ 1/2)t)t dt
1i h(t) tAp(l_cos(k+l/2)t)}dt+o(X)Pn (2 sin t/2)
1 n-1 (0/ ) h(t)
p-- E JP + (1--cos (k+ 1/2)t)dt+o(1)

/ (2 sin t/2)
"--Vn-Wn+O(1) aS n-c,

where
1 kizlpl lg(t) ldt-o(1)

by the conditions (8) and (10), and

1AI I(t) gt- o(1)Iwllei : / t
since

as n-oo

as

2 (t) dr- o k
/ t t J/ / L(k)

by (10). Thus we have proved that u,-o(1) as nc.
Putting (t)=(t) sin (n+ 1/2)t, we have

as



776 M. IZVMI and S. IZUMI [Vol. 45,---- o Ap sin (k/ 1/2)

sin t/2+p sin (n+l/2)ttdt
Ap sin (+ 1/2)t gt + o(1)

P. (2s/2) t=

(I0 I ) ()1 p + sin (k+ 1 / 2)t dt+ o(I)
P =, (2 s/2)
=+@+o(I),

where @-o(1) by similar estimation to w. Now, has a different
feature from v. We have

1 Ap + tn: k=l dun]

where

-o. klApl --o(1)
IPI L(n)

by (8) and (10). Again using (8) and (10), we get

since

as noo

and

n-i fi/Pn;On-- , Ap [+(t)t-(kt+O(kt))dt
=I J1/n

kAp=P+-(]+ 1)p+

1 1=P (--lt)-p (-)+ O(Ip[ + [p+l +]l ApI)

J1/(j+l)
19(t) dt o o(IP.I)

,+: =L(]) !

+(t) dt-o =o(IPl)
\: L(])

pt
by (8), (lO) and (11). Therefore, putting/(t)=.]o(u) du, we get

1 1 1
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Collecting above estimations, we get

By (9)and (10), we get in--O(1) as n--oo. Hence the condition (9) is
sufficient.
We shall now prove the necessity of the condition (9), supposing that

PnO. We suppose that t-0 as n--oo. If the condition (9) does not
hold, then there are an increasing sequence (nD of integers and an
increasing sequence (C) tending to infinity such that

1 [ P(llt) dt>C (.k=l, 2, ...).(16)
P, 1/n tL(1/t)

We can find a unction 90 such that

(17) [.olo(u)ldu=(t). t/L(1/t) for t>0,

where s(t) 0 as t $ 0 and e(1/n)=l//C or all k. We define (roD, a
subsequence of (nD, by the inductive method as follows: Let m,=n,
and if m is defined, m+l is taken such that

(18) o(u) du>2 o(u) du
J1/mk+

and

-1C, 1 I’ tL(1P(llt)l t)1 r/-’ P(I/t) dt >_
P/ tL(1/ t) P 1-

We shall define a unction such that
9(u) sin (m+ 1/2)u= I0(u) or (1/m/, 1/m_)

Then, by (17) and (18),
1 I P(llt)dtI:(u)sin(m+l/2)uduPm ilmi t

1 .r1/lk-1 P(1/t) dt(’ (U) sin (m+ 1/2)u du

) 1 "  P(llt)
Pm J ,/m-, t I’o (u) du(u) du

Pm tJllmlk t l/mik+l 1/m

X Ito go(u) du)

(k-- 1, 2, ...).
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! (1 f/::-’/)(1/t) dtt +o(U)[ du- P<I/t)dtl;l?o(U) du)Pm -/ t /_ t

P, / tL(1/t) /- tL(1/t)

which is a contradiction.
3. Proof of Theorem 2. Proof runs similarly to that of

Theorem 1, so that we shall only remark the following facts. By the
conditions (13) and (14), we get

(t) t-’dt [(t)t-%+ (t)t- dt
/ /

<A+o()+o dt -o(),

I" (t) p, ( )1 dt o (I p(1/ t)p’(1/ t) dr)1/ t i/n PP(1/t)

and then we can use them for the estimation of w and Pn, respec-

=o(P). hus heorem is roved.
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