9. On a Class of Hypoelliptic Differential Operators

By Yoshio KATO

Department of Mathematics, Aichi University of Education

(Comm. by Kinjirô KUNUGI, M. J. A., Jan. 12, 1970)

§1. Introduction. Let $A(x, y; \xi)$ and $B(x, y; \eta)$ be uniformly elliptic polynomials¹⁾ in $\xi \in R^{\nu}$ and in $\eta \in R^{\mu}$, respectively, with coefficients in $C^{\infty}(\Omega)$ and g(x) be a real valued function in $C^{\infty}(\Omega)$, not depending on y, where Ω is an open set of $R_x^{\nu} \times R_y^{\mu}$. In this paper, we consider the hypoellipticity²⁾ of linear partial differential operators of the form

(1) $P = A(x, y; D_x) + g(x)^2 B(x, y; D_y),$ where $D_x = (D_{x_1}, \dots, D_{x_\nu})$ with $D_{x_j} = -i\partial/\partial x_j$ and $D_y = (D_{y_1}, \dots, D_{y_\mu})$ with $D_{y_k} = -i\partial/\partial y_k$ $(i = \sqrt{-1})$. It is well known that if g(x) vanishes at no point of Ω operator (1) is hypoelliptic in Ω . Indeed, we can immediately see that it is formally hypoelliptic there. For operator (1) in which g(x) may vanish, we can prove

Theorem. Suppose in operator (1) that A and B are uniformly elliptic in Ω and the coefficients of A are not dependent on the variable y and that there exists a multi-index $\alpha = (\alpha_1, \dots, \alpha_{\nu}) \in N^{\nu}$ such that $D_x^{\alpha}g = D_{x_1}^{\alpha_1} \cdots D_{x_{\nu}}^{\alpha_{\nu}}g$ vanishes at no point of Ω . Then the differential operator P of form (1) is hypoelliptic in Ω .

This is motivated by the result of Dr. T. Matsuzawa (unpublished) that the operators on the (x, y)-plane: $D_x^{2l} + x^{2k} D_y^{2m}$ $(l, m = 1, 2, \dots; k=0, 1, \dots)$ are hypoelliptic in the plane (see [4]). One of the most important keys to the proof of Theorem is the inequality (H) which is stated in §2 and is one of the inequalities proved by Hörmander [2].

In §2 we prepare some lemmas and propositions, with the aid of which the proof of Theorem will be accomplished in §3.

§2. Preliminaries. Throughout this section we assume that A, B and g have the same meaning as in Theorem and that the degrees of A and B are 2l and 2m $(l, m=1, 2, \cdots)$, respectively. First define norm $||| \cdot |||$ and its dual norm $||| \cdot |||'$ by

$$|||u|||^2 = ||D_x^l u||^2 + ||gD_y^m u||^2 + ||u||^2, |||v|||' = \sup_{u \in G_0^{\infty}(\mathcal{Q})} \frac{|\langle v, u \rangle|}{|||u|||},$$

¹⁾ The $A(x, y; \xi)$ is called *uniformly elliptic* in ξ , if there exists a positive constant c such that $\operatorname{Re} A_0(x, y; \xi) \ge c |\xi|^{2l}$ for all $\xi \in \mathbb{R}^{\nu}$ and all $(x, y) \in \Omega$ where 2l is the degree of A and A_0 denotes the leading part of A.

²⁾ We say that P is hypoelliptic in Ω , if every $u \in \mathcal{D}'(\Omega)$ is infinitely differentiable in every open set where Pu is infinitely differentiable.

³⁾ We denote by N the set of non-negative integers.

where norm $\|\cdot\|$ is the usual L^2 -norm on Ω , $\langle v, u \rangle$ is the value of $v \in \mathcal{D}'(\Omega)$ at $u, \|D_x^l u\|^2 = \sum_{\alpha} \|D_x^{\alpha} u\|^2 (\alpha \in N^{\nu}, |\alpha| = \alpha_1 + \cdots + \alpha_{\nu} = l)$ and $\|D_y^m u\|^2 = \sum_{\beta} \|D_y^{\beta} u\|^2 (\beta \in N^{\mu}, |\beta| = \beta_1 + \cdots + \beta_{\mu} = m)$. Let $\varphi \in C^{\infty}(\overline{\Omega})$. Clearly we have

$$(2) \qquad \begin{array}{c} |||\varphi v|||' \leq \text{const. } |||v|||', \\ |||D_x^{\alpha} v|||' \leq ||v|| & \text{for } |\alpha| \leq l \\ |||gD_y^{\alpha} v|||' \leq ||v|| & \text{for } |\beta| \leq m. \end{array}$$

Let $L_{\delta} = 1 + \delta \left(\sum_{j=1}^{\nu} D_{x_j}^{2l} + \sum_{k=1}^{\mu} D_{v_k}^{2m} \right)$ for $\delta > 0$, and defind $L_{\delta}^{-1}v$ as the inverse Fourier transform of $\left\{ 1 + \delta \left(\sum_{j=1}^{\nu} \hat{\xi}_j^{2l} + \sum_{k=1}^{\mu} \eta_k^{2m} \right) \right\}^{-1} \hat{v}(\xi, \eta)$. ($\hat{v}(\xi, \eta)$ is the Fourier transform of v). It then follows immediately that, for every $v \in L^2(\Omega)$, $\alpha \in N^{\nu}$ and $\beta \in N^{\mu}$,

$$(3) \|\delta^{\theta} D_x^{\alpha} D_y^{\beta} L_{\delta}^{-1} v\| \leq \|v\|, \text{if} \ \theta = \frac{|\alpha|}{2l} + \frac{|\beta|}{2m} \leq 1$$

By using (3) we can verify

Lemma 1. For any compact set $K \subset \Omega$, there exists a positive constant $C^{(4)}$ such that

$$\begin{aligned} |||L^{-1}u||| \leq C|||u|||, & u \in C_0^{\infty}(K), \\ |||L^{-1}f|||' \leq C|||f|||', & f \in \mathcal{E}'_K.^{5)} \end{aligned}$$

Lemma 2. Let l_1, \dots, l_n be integers ≥ 1 . Then it follows that the inverse Fourier transform J(x) of $\left(1 + \sum_{j=1}^n \hat{\xi}_j^{2l_j}\right)^{-1}$ with respect to $\xi \in \mathbb{R}^n$ is infinitely differentiable except at the origin and that there exists a positive constant a and a function w(x) which is defined in |x| > 0 and is bounded in $|x| > \varepsilon$ for every $\varepsilon > 0$ as well as its derivatives, such that $J(x) = \exp(-a|x|)w(x)$ for |x| > 0.

The proof will be completed by induction on n.

Now we return to the operator P. Using the Gårding inequality, we can assert that, for every compact set $K \subset \Omega$,

 $(4) |||u||| \le C(|||Pu|||' + ||u||), u \in C_0^{\infty}(K).$

If we habitually introduce norm $\|\cdot\|_s$ for real s which is defined by $\|u\|_s^2 = \iint (1+|\xi|^2+|\eta|^2)^s |\hat{u}(\xi,\eta)|^2 d\xi d\eta$, it then follows from the assumption on g(x) that the inequality

(H)
$$||u||_{\bullet} \leq C \left(\sum_{j=1}^{\nu} ||D_{x_j}u|| + \sum_{k=1}^{\mu} ||gD_{y_k}u|| + ||u|| \right), \quad u \in C_0^{\infty}(K)$$

is valid for some positive number $\varepsilon \leq 1$ depending only on g(x) and K (for the proof see [2]). From (H) we can derive

⁴⁾ From now on, letters C, C' stand for positive constants depending on compact set in Ω .

⁵⁾ By \mathcal{E}'_K we denote the set of $u \in \mathcal{D}'(\Omega)$ with support K.

No. 1]

A Class of Hypoelliptic Differential Operators

 $(5) ||u||\varepsilon \leq C|||u|||, u \in C_0^{\infty}(K).$

In the below we shall state three propositions.

Proposition 1. The P is partially hypoelliptic in x, that is, every $u \in \mathcal{D}'(\Omega)$ is regular in x on every open set where Pu is regular in x (for the notion "regular in x" see Gårding-Malgrange [1]).

Proof. We have only to recall that the P is just one of operators introduced by Mizohata [5] (cf. Kato [3]).

Proposition 2. Let K be any compact set in Ω . Then it follows that every $v \in L^2(\Omega)$ such that $||D_x^{l-1}v|| < \infty$, $||gD_y^{m-1}v|| < \infty$, $|||Pv|||' < \infty$ and supp $[v] \subset K$ satisfies $|||v||| < \infty$ and belongs to $H^{\epsilon,0}$ with some positive number $\epsilon \le 1$ depending only on g(x) and K.

Proof. Let K_0 be a compact set in Ω . By U_{K_0} we denote the set of $u \in L^2(\Omega)$ such that $||D_x^{2t}u|| < \infty$, $||D_y^{2m}u|| < \infty$ and $\text{supp } [u] \subset K_0$. From (4) and (5) we can easily obtain the inequality

 $(6) ||u||_{\bullet} \leq C |||u||| \leq C' (|||Pu|||' + ||u||), u \in U_{K_0}.$

Now let v be an element of $L^2(\Omega)$ such that $\operatorname{supp} [v] \subset K$, $||D_x^{l-1}v|| < \infty$, $||gD_y^{m-1}v|| < \infty$ and $|||Pv|||' < \infty$. For $\delta > 0$, we set $v_\delta = \chi L_{\delta}^{-1}v$, where $\chi \in C_0^{\infty}(\Omega)$ such that $0 \le \chi \le 1$ and $\chi = 1$ in a neighborhood ω of K. Putting $\operatorname{supp} [\chi] = K_0$, we have $v_\delta \in U_{K_0}$. So that (6) is valid for $u = v_\delta$. If we assume the existence of a number M such that

(7) $|||Pv_{\delta}|||' \leq M$ for all $\delta > 0$, it then follows from (6) that $|||v||| < \infty$ and $||v||_{\delta} < \infty$. Thus we have only to prove (7). In ω we have $L_{\delta}Pv_{\delta} = Pv + [L_{\delta}, P]v_{\delta}$, provided [X, Y] = XY - YX. Accordingly,

 $Pv_{\delta} = L_{\delta}^{-1}Pv + L_{\delta}^{-1}[L_{\delta}, P]v_{\delta} + L_{\delta}^{-1}h_{\delta},$

where $h_{\delta}=0$ in ω , supp $[h_{\delta}] \subset$ supp $[\chi]$ and $h_{\delta}=PL_{\delta}\chi L_{\delta}^{-1}v$ out of ω . By (2) and Lemma 1 we have $|||L_{\delta}^{-1}Pv|||' \leq C|||Pv|||'$ and $|||L_{\delta}^{-1}h_{\delta}|||' \leq C||h_{\delta}||$. If E(x, y) denotes the inverse Fourier transform of $\left(1+\sum_{j=1}^{\nu}\xi_{j}^{2l}+\sum_{k=1}^{\mu}\eta_{k}^{2m}\right)^{-1}$, we have

$$(L_{\delta}^{-1}v)(x, y) = \delta^{-1/2l-1/2m} \iint E\left(\frac{x-x'}{\delta^{1/2l}}, \frac{y-y'}{\delta^{1/2m}}\right) v(x', y') dx' dy'.$$

With the aid of Lemma 2, we can assert that if $(x, y) \notin \omega$, any derivative of $L_{\delta}^{-1}v$ decreases faster than any power of δ when $\delta \rightarrow 0$. Hence we have $||h_{\delta}|| \rightarrow 0$ as $\delta \rightarrow 0$. Finally we can deduce from (2) and (3)

$$\begin{split} &|||L_{\delta}^{-1}[L_{\delta},P]v_{\delta}|||' \leq C(\|D_{x}^{\iota-1}v\|+\|gD_{y}^{m-1}v\|+\|v\|).\\ &\text{This completes the proof.} \end{split} \qquad \text{Q.E.D.}$$

We denote by H(s, t) (s, t real) the set of $u \in S'(R^{\nu+\mu})$ such that

$$\|u\|_{s,t}^2 = \iint (1 + |\xi|^2)^s (1 + |\eta|^2)^t |\hat{u}(\xi, \eta)|^2 d\xi d\eta < \infty$$

It is clear that $H^{2\epsilon} \subset H(\varepsilon, \varepsilon)$ for $\varepsilon \ge 0$.

⁶⁾ $H^{\mathfrak{s}} = \{ u \in \mathcal{S}'(R^{\nu+\mu}); ||u||_{\mathfrak{s}} < \infty \}.$

Proposition 3. If v is in $H(\varepsilon, \varepsilon) \cap \mathcal{E}'(\Omega)$ for a positive number $\varepsilon \leq 1$ and satisfies $|||v||| < \infty$, it then follows that

 $\begin{array}{ll} (\ 8\)_x & D_x^{\alpha} v \in H(\varepsilon/2^{\lfloor \alpha \rfloor}, \varepsilon/2^{\lfloor \alpha \rfloor}) & for \ |\alpha| \leq l-1. \\ (\ 8\)_y & D_y^{\beta}(gv) \in H(\varepsilon/2^{\lfloor \beta \rfloor}, \varepsilon/2^{\lfloor \beta \rfloor}) & for \ |\beta| \leq m-1. \\ \text{Proof.} & \text{First of all we note that, for real } \theta, \end{array}$

(9) $u \in H(\theta-1, \theta) \cap H(1, 0) \Rightarrow u \in H(\theta/2, \theta/2).$ Indeed, using the Schwarz inequality, we have

We shall prove $(8)_x$ and $(8)_y$ by induction on $|\alpha|$ and $|\beta|$ respectively. It follows from the assumption on v that $(8)_x$ is valid for $|\alpha|=0$ and that $D_x^{\alpha}v \in L^2$ for $|\alpha| \le l$. Hence we have $D_x^{\alpha}v \in H(1,0)$ for $|\alpha| \le l-1$. Suppose that $(8)_x$ is valid for $|\alpha| \le l-2$. Then

$$D_x^{lpha} v \in H(arepsilon/2^{|lpha|-1}-1, \, arepsilon/2^{|lpha|-1}) \cap H(1,0),$$

for $1 \le |\alpha| \le l-1$. Using (9), we can conclude $(8)_x$. By the same argument as above we can assert $(8)_y$.

§ 3. Proof of Theorem. Let $u \in \mathcal{D}'(\Omega)$ such that $Pu \in C^{\infty}(\Omega)$ and Ω_0 be an arbitrary open subset of Ω such that $\overline{\Omega}_0 \subset \Omega$. From Proposition 1 it follows that, for any integer $n \ge 0$ satisfying $2n \ge l-1$, there exists an integer $s \le 0$ such that, for every $\varphi \in C_0^{\infty}(\Omega_0)$, $\varphi u \in H(2n, s)$, i.e., $u \in H_{loc}^{2n,s}(\Omega_0)$ (for the existence of such s, see [1]). Then, putting t=s-m+1, we have, for every $\psi \in C_0^{\infty}(\Omega_0)$,

(10)_t
$$E_t D_x^{\alpha}(\psi u) \in L^2 \quad \text{for } |\alpha| \le l-1, \\ E_t D_y^{\beta}(g \psi u) \in L^2 \quad \text{for } |\beta| \le m-1$$

where $E_t v$ denotes the inverse Fourier transform of $(1+|\eta|^2)^{t/2} \hat{v}(\xi, \eta)$. Using $(10)_t$ we can derive from (2) the inequality $|||P(\varphi E_t(\psi u))|||' < \infty$ for all $\varphi, \psi \in C_0^{\infty}(\Omega_0)$. This, together with Propositions 2 and 3, quarantees $(10)_{t+d}$ with $d = \min(\varepsilon/2^t, \varepsilon/2^m)$. We can continue in this fashion and obtain $(10)_{2n-s}$. Thus we have $\psi u \in H(2n, s) \cap H(0, 2n-s)$ for every $\psi \in C_0^{\infty}(\Omega_0)$, from which, by the similar argument as in (9), follows $u \in H_{loc}^{n,n}(\Omega_0)$. This completes the proof of Theorem, since nand Ω_0 are arbitrary.

References

- L. Gårding et B. Malgrange: Opérateurs différentiels partiellement hypoelliptiques et partiellement elliptiques. Math. Scand., 9, 5-21 (1961).
- [2] L. Hörmander: Hypoelliptic second order differential equations. Acta Math., 119, 147-171 (1968).
- [3] Y. Kato: Opérateurs différentiels partiellement hypoelliptiques. Bull. Soc. Math. France, 94, 245-259 (1966).

No. 1] A Class of Hypoelliptic Differential Operators

- [4] T. Matsuzawa: Sur les équations $u_{tt}+t^{\alpha}u_{xx}=f(\alpha\geq 0)$ (to appear).
- [5] S. Mizohata: Une remarque sur les opérateurs différentiels hypoelliptiques et partiellement hypoelliptiques. J. Math. Kyoto Univ., 1, 411-423 (1961-62).