9. On a Class of Hypoelliptic Differential Operators

By Yoshio Kato
Department of Mathematics, Aichi University of Education

(Comm. by Kinjirô Kunugi, M. J. A., Jan. 12, 1970)
§1. Introduction. Let $A(x, y ; \xi)$ and $B(x, y ; \eta)$ be uniformly elliptic polynomials ${ }^{1}$ in $\xi \in R^{\nu}$ and in $\eta \in R^{\mu}$, respectively, with coefficients in $C^{\infty}(\Omega)$ and $g(x)$ be a real valued function in $C^{\infty}(\Omega)$, not depending on y, where Ω is an open set of $R_{x}^{\nu} \times R_{y}^{\mu}$. In this paper, we consider the hypoellipticity ${ }^{2)}$ of linear partial differential operators of the form
(1) $\quad P=A\left(x, y ; D_{x}\right)+g(x)^{2} B\left(x, y ; D_{y}\right)$,
where $D_{x}=\left(D_{x_{1}}, \cdots, D_{x_{\nu}}\right)$ with $D_{x_{j}}=-i \partial / \partial x_{j}$ and $D_{y}=\left(D_{y_{1}}, \cdots, D_{y_{\mu}}\right)$ with $D_{y_{k}}=-i \partial / \partial y_{k}(i=\sqrt{-1})$. It is well known that if $g(x)$ vanishes at no point of Ω operator (1) is hypoelliptic in Ω. Indeed, we can immediately see that it is formally hypoelliptic there. For operator (1) in which $g(x)$ may vanish, we can prove

Theorem. Suppose in operator (1) that A and B are uniformly elliptic in Ω and the coefficients of A are not dependent on the variable y and that there exists a multi-index $\alpha=\left(\alpha_{1}, \cdots \alpha_{\nu}\right) \in N^{v^{3}}$ such that $D_{x}^{\alpha} g=D_{x_{1}}^{\alpha_{1}} \cdots D_{x_{v}}^{\alpha_{\nu}} g$ vanishes at no point of Ω. Then the differential operator P of form (1) is hypoelliptic in Ω.

This is motivated by the result of Dr. T. Matsuzawa (unpublished) that the operators on the (x, y)-plane: $D_{x}^{2 l}+x^{2 k} D_{y}^{2 m}(l, m=1,2, \cdots$; $k=0,1, \ldots$) are hypoelliptic in the plane (see [4]). One of the most important keys to the proof of Theorem is the inequality (H) which is stated in § 2 and is one of the inequalities proved by Hörmander [2].

In $\S 2$ we prepare some lemmas and propositions, with the aid of which the proof of Theorem will be accomplished in § 3.
§2. Preliminaries. Throughout this section we assume that A, B and g have the same meaning as in Theorem and that the degrees of A and B are $2 l$ and $2 m(l, m=1,2, \cdots)$, respectively. First define norm ||| • ||| and its dual norm ||| • ||| ${ }^{\prime}$ by

$$
\|u\|\left\|^{2}=\right\| D_{x}^{l} u\left\|^{2}+\right\| g D_{y}^{m} u\left\|^{2}+\right\| u\left\|^{2},\right\|\|v\| \|^{\prime}=\sup _{u \in C_{0}^{\infty}(\Omega)} \frac{|\langle v, u\rangle|}{\|u\| \|}
$$

[^0]where norm $\|\cdot\|$ is the usual L^{2}-norm on $\Omega,\langle v, u\rangle$ is the value of $v \in \mathscr{D}^{\prime}(\Omega)$ at $u,\left\|D_{x}^{l} u\right\|^{2}=\sum_{\alpha}\left\|D_{x}^{\alpha} u\right\|^{2}\left(\alpha \in N^{\nu},|\alpha|=\alpha_{1}+\cdots+\alpha_{\nu}=l\right)$ and $\left\|D_{y}^{m} u\right\|^{2}=\sum_{\beta}\left\|D_{y}^{\beta} u\right\|^{2}\left(\beta \in N^{\mu},|\beta|=\beta_{1}+\cdots+\beta_{\mu}=m\right)$. Let $\varphi \in C^{\infty}(\bar{\Omega})$. Clearly we have
\[

$$
\begin{array}{cl}
\|\varphi v\| \|^{\prime} \leq \text { const. }\|v\| \|^{\prime}, \\
\left\|\left\|D_{x}^{\alpha} v\right\|\right\|^{\prime} \leq\|v\| & \text { for }|\alpha| \leq l \tag{2}\\
\left\|g D_{y}^{\beta} v\right\|\left\|^{\prime} \leq\right\| v \| & \text { for }|\beta| \leq m .
\end{array}
$$
\]

Let $L_{\delta}=1+\delta\left(\sum_{j=1}^{\nu} D_{x_{j}}^{2 l}+\sum_{k=1}^{\mu} D_{y_{k}}^{2 m}\right)$ for $\delta>0$, and defind $L_{\delta}^{-1} v$ as the inverse Fourier transform of $\left\{1+\delta\left(\sum_{j=1}^{\nu} \xi_{j}^{2 l}+\sum_{k=1}^{\mu} \eta_{k}^{2 m}\right)\right\}^{-1} \hat{v}(\xi, \eta) . \quad(\hat{v}(\xi, \eta)$ is the Fourier transform of v). It then follows immediately that, for every $v \in L^{2}(\Omega), \alpha \in N^{\nu}$ and $\beta \in N^{\mu}$,

$$
\begin{equation*}
\left\|\delta^{\theta} D_{x}^{\alpha} D_{y}^{\beta} L_{o}^{-1} v\right\| \leq\|v\|, \quad \text { if } \theta=\frac{|\alpha|}{2 l}+\frac{|\beta|}{2 m} \leq 1 \tag{3}
\end{equation*}
$$

By using (3) we can verify
Lemma 1. For any compact set $K \subset \Omega$, there exists a positive constant $C^{4)}$ such that

$$
\begin{array}{ll}
\left\|L^{-1} u\right\| \leq C\| \| u\| \|, & u \in C_{0}^{\infty}(K) \\
\left\|L^{-1} f\right\|\left\|^{\prime} \leq C\right\|\|f\|^{\prime}, & f \in \mathcal{E}_{K}^{\prime} .{ }^{.}
\end{array}
$$

Lemma 2. Let l_{1}, \cdots, l_{n} be integers ≥ 1. Then it follows that the inverse Fourier transform $J(x)$ of $\left(1+\sum_{j=1}^{n} \xi_{j}^{2 l_{j}}\right)^{-1}$ with respect to $\xi \in R^{n}$ is infinitely differentiable except at the origin and that there exists a positive constant a and a function $w(x)$ which is defined in $|x|>0$ and is bounded in $|x|>\varepsilon$ for every $\varepsilon>0$ as well as its derivatives, such that $J(x)=\exp (-a|x|) w(x)$ for $|x|>0$.

The proof will be completed by induction on n.
Now we return to the operator P. Using the Gårding inequality, we can assert that, for every compact set $K \subset \Omega$,
(4) $\quad\|u\| \| \leq C\left(\|P u\|\left\|^{\prime}+\right\| u \|\right)$, $\quad u \in C_{0}^{\infty}(K)$.

If we habitually introduce norm $\|\cdot\|_{s}$ for real s which is defined by $\|u\|_{s}^{2}=\iint\left(1+|\xi|^{2}+|\eta|^{2}\right)^{s}|\hat{u}(\xi, \eta)|^{2} d \xi d \eta$, it then follows from the assumption on $g(x)$ that the inequality
(H)

$$
\|u\|_{s} \leq C\left(\sum_{j=1}^{\nu}\left\|D_{x_{j}} u\right\|+\sum_{k=1}^{n}\left\|g D_{y_{k}} u\right\|+\|u\|\right), \quad u \in C_{0}^{\infty}(K)
$$

is valid for some positive number $\varepsilon \leq 1$ depending only on $g(x)$ and K (for the proof see [2]). From (H) we can derive

[^1]\[

$$
\begin{equation*}
\|u\| \varepsilon \leq C\| \| u \|, \quad u \in C_{0}^{\infty}(K) . \tag{5}
\end{equation*}
$$

\]

In the below we shall state three propositions.
Proposition 1. The P is partially hypoelliptic in x, that is, every $u \in \mathscr{D}^{\prime}(\Omega)$ is regular in x on every open set where $P u$ is regular in x (for the notion "regular in x " see Gårding-Malgrange [1]).

Proof. We have only to recall that the P is just one of operators introduced by Mizohata [5] (cf. Kato [3]).

Proposition 2. Let K be any compact set in Ω. Then it follows that every $v \in L^{2}(\Omega)$ such that $\left\|D_{x}^{l-1} v\right\|<\infty,\left\|g D_{y}^{m-1} v\right\|<\infty,\|P v\| \|^{\prime}<\infty$ and supp $[v] \subset K$ satisfies $\|v v\|<\infty$ and belongs to $H^{\text {© }}{ }^{6)}$ with some positive number $\varepsilon \leq 1$ depending only on $g(x)$ and K.

Proof. Let K_{0} be a compact set in Ω. By $U_{K_{0}}$ we denote the set of $u \in L^{2}(\Omega)$ such that $\left\|D_{x}^{2 l} u\right\|<\infty,\left\|D_{y}^{2 m} u\right\|<\infty$ and supp $[u] \subset K_{0}$. From (4) and (5) we can easily obtain the inequality

$$
\begin{equation*}
\|u\|_{\odot} \leq C \mid\|u\| \|^{\prime}\left(\| \| P u\| \|^{\prime}+\|u\|\right), \quad u \in U_{K_{0}} \tag{6}
\end{equation*}
$$

Now let v be an element of $L^{2}(\Omega)$ such that $\operatorname{supp}[v] \subset K,\left\|D_{x}^{l-1} v\right\|$ $<\infty,\left\|g D_{y}^{m-1} v\right\|<\infty$ and $\|P v\| \|^{\prime}<\infty$. For $\delta>0$, we set $v_{\dot{\delta}}=\chi L_{\delta}^{-1} v$, where $\chi \in C_{0}^{\infty}(\Omega)$ such that $0 \leq \chi \leq 1$ and $\chi=1$ in a neighborhood ω of K. Putting supp $[\chi]=K_{0}$, we have $v_{\delta} \in U_{K_{0}}$. So that (6) is valid for $u=v_{\delta}$. If we assume the existence of a number M such that

$$
\begin{equation*}
\left\|P v_{\delta}\right\| \|^{\prime} \leq M \quad \text { for all } \delta>0 \tag{7}
\end{equation*}
$$

it then follows from (6) that $\|v v\|<\infty$ and $\|v\|_{\text {d }}<\infty$. Thus we have only to prove (7). In ω we have $L_{\delta} P v_{\delta}=P v+\left[L_{\delta}, P\right] v_{\dot{\delta}}$, provided $[X, Y]=X Y-Y X$. Accordingly,

$$
P v_{\dot{\delta}}=L_{\dot{\delta}}^{-1} P v+L_{\dot{\delta}}^{-1}\left[L_{\dot{\delta}}, P\right] v_{\dot{\delta}}+L_{\dot{\delta}}^{-1} h_{\dot{\delta}},
$$

where $h_{\dot{\delta}}=0$ in $\omega, \operatorname{supp}\left[h_{\dot{\delta}}\right] \subset \operatorname{supp}[\chi]$ and $h_{\dot{\delta}}=P L_{\dot{\delta}} \chi L_{\hat{\delta}}^{-1} v$ out of ω. By (2) and Lemma 1 we have $\left\|L_{\delta}^{-1} P v\right\|\left\|^{\prime} \leq C\right\|\left|\mid P v\| \|^{\prime}\right.$ and $\left\|\mid L_{\delta}^{-1} h_{\delta}\right\|\left\|^{\prime} \leq C\right\| h_{\dot{\delta}} \|$. If $E(x, y)$ denotes the inverse Fourier transform of $\left(1+\sum_{j=1}^{\nu} \xi_{j}^{2 l}+\sum_{k=1}^{\mu} \eta_{k}^{2 m}\right)^{-1}$, we have

$$
\left(L_{\delta}^{-1} v\right)(x, y)=\delta^{-1 / 2 l-1 / 2 m} \iint E\left(\frac{x-x^{\prime}}{\delta^{1 / 2 l}}, \frac{y-y^{\prime}}{\delta^{1 / 2 m}}\right) v\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime}
$$

With the aid of Lemma 2, we can assert that if $(x, y) \notin \omega$, any derivative of $L_{\delta}^{-1} v$ decreases faster than any power of δ when $\delta \rightarrow 0$. Hence we have $\left\|h_{\dot{\delta}}\right\| \rightarrow 0$ as $\delta \rightarrow 0$. Finally we can deduce from (2) and (3)

$$
\left\|L_{\hat{\delta}}^{-1}\left[L_{\partial}, P\right] v_{\delta}\right\| \|^{\prime} \leq C\left(\left\|D_{x}^{l-1} v\right\|+\left\|g D_{y}^{m-1} v\right\|+\|v\|\right)
$$

This completes the proof.
Q.E.D.

We denote by $H(s, t)$ (s, t real) the set of $u \in \mathcal{S}^{\prime}\left(R^{\nu+\mu}\right)$ such that

$$
\|u\|_{s, t}^{2}=\iint\left(1+|\xi|^{2}\right)^{s}\left(1+|\eta|^{2}\right)^{t}|\hat{u}(\xi, \eta)|^{2} d \xi d \eta<\infty
$$

It is clear that $H^{2 \varepsilon} \subset H(\varepsilon, \varepsilon)$ for $\varepsilon \geq 0$.

$$
\text { 6) } H^{\delta}=\left\{u \in \mathcal{S}^{\prime}\left(R^{\nu+\mu}\right) ;\|u\|_{\odot}<\infty\right\} .
$$

Proposition 3. If v is in $H(\varepsilon, \varepsilon) \cap \mathcal{E}^{\prime}(\Omega)$ for a positive number $\varepsilon \leq 1$ and satisfies $\|v v\|<\infty$, it then follows that
(8) $\quad D_{x}^{\alpha} v \in H\left(\varepsilon / 2^{|\alpha|}, \varepsilon / 2^{|\alpha|}\right) \quad$ for $|\alpha| \leq l-1$.
$(8)_{y} \quad D_{y}^{\beta}(g v) \in H\left(\varepsilon / 2^{|\beta|}, \varepsilon / 2^{|\beta|}\right) \quad$ for $|\beta| \leq m-1$.
Proof. First of all we note that, for real θ,
(9) $\quad u \in H(\theta-1, \theta) \cap H(1,0) \Rightarrow u \in H(\theta / 2, \theta / 2)$.

Indeed, using the Schwarz inequality, we have

$$
\begin{aligned}
\|u\|_{\theta / 2, \theta / 2}^{2}= & \iint\left(1+|\xi|^{2}\right)^{(\theta-1) / 2}\left(1+|\eta|^{2}\right)^{\theta / 2}|\hat{u}|\left(1+|\xi|^{2}\right)^{1 / 2}|\hat{u}| d \xi d \eta \\
& \leq\left(\iint\left(1+|\xi|^{2}\right)^{\theta-1}\left(1+|\eta|^{2}\right)^{\theta}|\hat{u}|^{2} d \xi d \eta\right)^{1 / 2}\left(\iint\left(1+|\xi|^{2}|\hat{u}|^{2} d \xi d \eta\right)^{1 / 2} .\right.
\end{aligned}
$$

We shall prove (8) ${ }_{x}$ and (8) $)_{y}$ by induction on $|\alpha|$ and $|\beta|$ respectively. It follows from the assumption on v that (8$)_{x}$ is valid for $|\alpha|=0$ and that $D_{x}^{\alpha} v \in L^{2}$ for $|\alpha| \leq l$. Hence we have $D_{x}^{\alpha} v \in H(1,0)$ for $|\alpha| \leq l-1$. Suppose that (8) x_{x} is valid for $|\alpha| \leq l-2$. Then

$$
D_{x}^{\alpha} v \in H\left(\varepsilon / 2^{|\alpha|-1}-1, \varepsilon / 2^{|\alpha|-1}\right) \cap H(1,0)
$$

for $1 \leq|\alpha| \leq l-1$. Using (9), we can conclude (8) $)_{x}$. By the same argument as above we can assert (8) y_{y}.
§3. Proof of Theorem. Let $u \in \mathscr{D}^{\prime}(\Omega)$ such that $P u \in C^{\infty}(\Omega)$ and Ω_{0} be an arbitrary open subset of Ω such that $\bar{\Omega}_{0} \subset \Omega$. From Proposition 1 it follows that, for any integer $n \geq 0$ satisfying $2 n \geq l-1$, there exists an integer $s \leq 0$ such that, for every $\varphi \in C_{0}^{\infty}\left(\Omega_{0}\right), \varphi u \in H(2 n, s)$, i.e., $u \in H_{\mathrm{loc}}^{2 n, s}\left(\Omega_{0}\right)$ (for the existence of such s, see [1]). Then, putting $t=s-m+1$, we have, for every $\psi \in C_{0}^{\infty}\left(\Omega_{0}\right)$,

$$
\begin{array}{ll}
E_{t} D_{x}^{\alpha}(\psi u) \in L^{2} & \text { for }|\alpha| \leq l-1, \tag{10}\\
E_{t} D_{y}^{\beta}(g \psi u) \in L^{2} & \text { for }|\beta| \leq m-1,
\end{array}
$$

where $E_{t} v$ denotes the inverse Fourier transform of $\left(1+|\eta|^{2}\right)^{t / 2} \hat{v}(\xi, \eta)$. Using (10) $)_{t}$ we can derive from (2) the inequality $\left\|\left|P\left(\varphi E_{t}(\psi u)\right) \|\right|^{\prime}<\infty\right.$ for all $\varphi, \psi \in C_{0}^{\infty}\left(\Omega_{0}\right)$. This, together with Propositions 2 and 3, quarantees $(10)_{t+d}$ with $d=\min \left(\varepsilon / 2^{l}, \varepsilon / 2^{m}\right)$. We can continue in this fashion and obtain (10) 2n-s . Thus we have $\psi u \in H(2 n, s) \cap H(0,2 n-s)$ for every $\psi \in C_{0}^{\infty}\left(\Omega_{0}\right)$, from which, by the similar argument as in (9), follows $u \in H_{1 \mathrm{loc}}^{n, n}\left(\Omega_{0}\right)$. This completes the proof of Theorem, since n and Ω_{0} are arbitrary.

References

[1] L. Gårding et B. Malgrange: Opérateurs différentiels partiellement hypoelliptiques et partiellement elliptiques. Math. Scand., 9, 5-21 (1961).
[2] L. Hörmander: Hypoelliptic second order differential equations. Acta Math., 119, 147-171 (1968).
[3] Y. Kato: Opérateurs différentiels partiellement hypoelliptiques. Bull. Soc. Math. France, 94, 245-259 (1966).
[4] T. Matsuzawa: Sur les équations $u_{t t}+t^{\alpha} u_{x x}=f(\alpha \geq 0)$ (to appear).
[5] S. Mizohata: Une remarque sur les opérateurs différentiels hypoelliptiques et partiellement hypoelliptiques. J. Math. Kyoto Univ., 1, 411-423 (1961-62).

[^0]: 1) The $A(x, y ; \xi)$ is called uniformly elliptic in ξ, if there exists a positive constant c such that $\operatorname{Re} A_{0}(x, y ; \xi) \geq c|\xi|^{2 l}$ for all $\xi \in R^{\nu}$ and all $(x, y) \in \Omega$ where $2 l$ is the degree of A and A_{0} denotes the leading part of A.
 2) We say that P is hypoelliptic in Ω, if every $u \in \mathscr{D}^{\prime}(\Omega)$ is infinitely differentiable in every open set where $P u$ is infinitely differentiable.
 3) We denote by N the set of non-negative integers.
[^1]: 4) From now on, letters C, C^{\prime} stand for positive constants depending on compact set in Ω.
 5) By $\mathcal{E}^{\prime}{ }_{K}$ we denote the set of $u \in \mathscr{D}^{\prime}(\Omega)$ with support K.
