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1. Introduction. The uniqueness theorems for generalized solu-
tions of first order quasilinear hyperbolic equations (or systems) were
proved by either Holmgren’s method [1], [2], or the method of using
the potential function [3]-[5].

The purpose of this note is to extend the uniqueness theorems to
certain second order quasilinear hyperbolic equations with two inde-
pendent variables (Section 2) and with n (>2) independent variables
(Section 3). The proofs of Lemma 1 and Theorem 1 in Section 2 are
based on the potential function, and Theorem 2 in Section 3 is obtained
by ttolmgren’s method.

In this note we state the results only. Detailed proof will be
published elsewhere.

2. The case of two independent variables.
In f2--{a_x_b,O_tgT, TO}, we consider the following equa-

tion
( 1 ) u(x, t)/t=A(x, t, u, u/x)/3x+B(x, t, u)
with initial conditions
( 2 ) u(x, 0) u0(x), u(x, O)/t--Vo(X)
where Uo(X) e Lip [a, b] and Vo(X) e L[a, b]. We assume that A(x, t, u, p)
is of class C with respect to all arguments and satisfies
( 3 ) A(x, t, u, p)/3pO, 2A(x, t, u, p)/3p2O
and that B(x, t, u) is of class C with respect to all arguments.

The definition of the generalized solution u(x, t) of the Cauchy
problem (1), (2) is the following" (a) u(x, t) e Lip (/2). (b) u(x, t)
satisfies the initial conditions (2) and the integral identity

(4) ru(x,t)dx+A(x,t,u,u)dt-f;B(x, t,u)dxdt=O

where F is an arbitrary piece-wise smooth closed contour, bounding
a domain D and lying in 9. (c) u(x, t) possesses the semi-increasing
property with respect to t (in the sence of Douglis), i.e., there is a
bounded measurable function v(x, t) defined in 9 such that
( 5 ) u(x, t) v(x, t), a.e. in t9
and that
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( 6 ) v(x, t’) v(x, t) > K(t) for 0< t< t’< T
where K() is a nonnegative and non-increasing unction o on the
interval 0< t< T.

Introducing the potential function"

(7) U(x, t):.I:u(x’, t)dx’/.I:(t--s)[A(, s, u(, s), ux(, s))

--B’($, s)]ds,
where is an arbitrary but fixed number such that $ e [a, b] and

( 8 B’(, s)= B(x’, s, u(x’, s))dx’,
(s)

in which $0(s) is some smooth curve in 9, we obtain a nonlinear
integro-differential equation

( 9 ) U/St=A(x, t, U/x, U/x)+ B(x’, t, 3U(x’, t)/3x)dx’.
to(t)

Now we consider the Cauchy problem for the equation (9) with
initial conditions

(10) U(x, O)=:uo(x’)dx’, 3U(x, O)/t=I:vo(x’)dx’.
The definition of the generalized solution U(x, t) of (9), (10) is the

ollowing" (a) U(x, t) e C([2) and Ut, U e Lip (9). (b) U(x, t) satis-
fies the equation (9) almost everywhere with (10). (c) U possesses
the semi-increasing property with respect to t.

Then if u(x, t) is a generalized solution of (1) with (2), U(x, t)
defined by (7) is a generalized solution of (9) with (10). Conversely,
if there is a generalized solution U(x, t) of (9) with (10), the unction
defined by

u(x, t) U(x, t) /x
is a generalized solution o (1) with (2).

Let M and t be constants such that
(11) M=max (A(x, t, u, p))/
(12) t=min (T, (/-- e)/2M)
where maximum is taken for (x,t) in 9, lul<.maxlU(x,t)l and

IP]< sup U(x, t) ], and a, fl are arbitrary numbers such that

a_afl_b.
We shall call a trapezoid T= {(x, t)

a trapezoid of determinacy for the generalized solution U(x, t)con-
sidered if $o(t) belongs to a rectangle"

a+Mv<_x<_fl--Mr, Otv<t.
Denoting by I, the intersection T{t-p}, we obtain the following
lemma"

Lemmao Let U(x, t),i-1, 2, be two generalized solutions of the
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Cauchy problem for the equation (9) with initial data (10) and E(t) be
the integral

f(x, t)

( U,(x, t) 3x-- U(x, t) / 3x)l dx,+
where

(14) f(x, t)= oA(x, t, OU/x+(l-O)U/x, OU/x

+ (1-- t?)U./
Then, in the common trapezoid of determinacy, there exist appropriate
positive constants and/ such that the quantity

e-,t(k(t))-E(t)
decreases monotonically as t increases in the interval Ott, where

k(t)-exp {-:K(p)dp}.
The constant 2 depends on M=max (A(x, t, u, p))/,
c max A(x, t, u, p)], c=max At(x, t, u, p)1, c max A(x, t, u, p)
c=max A(x, t, u, p)I, c rain A(x, t, u, p)],
where maximum and minimum are taken over (x, t)in t,

]3U/3xl and over ]p]<sup]3U/3x], i=1,2. The constant [ is de-

retrained from M, c and b--a. If B--O, then we may take/=0.
As an immediate consequence of the lemma, we have
Theorem 1. If K(t) is summable in (0, T), two generalized solu-

tions of the equation (1), which satisfy the same initial conditions,
coincide almost everywhere in a common trapezoid of determinacy.

Remark. We see easily that the similar result as the lemma is
valid for the Cauchy problem for the equation of the form:

u(x, t) /t=A(x, t, u/x, ..., U/Xn, U)
with initial conditions

u(x, 0) u0(x), u(x, O)/t=vo(X)
where x=(x, ..., x) and Au=u/3x[+ ’.. +3u/3x.

:}. The case of n independent variables. Let S-{(x,t); tO,x
e Rn}, Sr- {(x, t) O< t< T, x e Rn} and Sr- {(x, t) O<t T, x e R}.
Here T is an arbitrary positive number.

We consider the following second order quasilinear partial differ-
ential equation

(15) 3u(x, t) / 3t= 3A(x, t, u, Tu) /3x+B(x, t, u, ’u)

with initial conditions
(16) u(x, 0)-- u0(x), u(x, O) /t= Vo(X)
where x (x, ..., Xn) e R, P’u (3u/x, ..., 3u/3x), Uo(X) Lip(R),
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and Vo(X)e L(R). We assume that A(x, t, u, p) is of class C with
respect to all arguments where p-(p, ..., p) and A(x, t, u, p)
3A(x, , u, p) /p satisfy the following conditions"

1) For all x, t,u and p
(17) A(x, t, u, p)=A(x, t, u, p).

2) For all x, t, u, p and all real vectors -($,..., $)

(18) 0<1 <. , Ai(x, t, u, p)$i$
i=l i,j=l

where is a positive constant.
3) For all x, t, u, p and for each k (k-1, ..., n)

(19) 3A(x, t, u, p) /3pp >O.
i,J=l

We assume that B(x, , u, p) is of class, C with respect to a11
arguments.

The definition of the generalized solution u of the Cauchy problem
(15), (16) is the following" (a) u(x, ) e Lip (St). (b) u(x, ) satisfies
the integral identity

(0) [. + A(z, t, , P’)-B(, t, , P’) ]ddt
>0 i=1

+ 0

for any C test function (x, t) with compact support in Sr. (c) its
first derivatives u(x, t) (i-1, ..., n) possess the semi-increasing
property with respect to t, i.e., there exist bounded measurable func-
tions v(x, t) (i-1,..., n) defined in Sr such that
(21) u(x, t)-v(x, t) a.e. in Sr
and that

(22) v(x, t’) v(x, t) > K(t) for 0< t< t’< T,
t’--t

where K(t) is a nonnegative and non-increasing function of t on the
interval 0< t< T.

Theorem 2. If K(t) is summable on (0, T), the generalized solu-
tion of the Cauchy problem for the equation (15) with the initial con-
ditions (16) is unique.

Outline of proof for Theorem 2. Let ul(x, t), u2(x,t) be two
generalized solutions of the equation (15) with the same initial data.
Then the difference w(x, t)-ux(x, t)--u(x, t) satisfies

(23) [w. Ctt + A(x, t)wxjCx + A(x, t)wx
tO t,j=l i=1

>, B(x, t)w B(x, t)w]dxdt 0
t=1

where

JO
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A(x, t) t, Ou+ (1- )u, 017u + (1- O)7u) /

We shall establish that w--0 by showing

(24) [[ (x, t)w(x, t)dxdt=O
JJt20

or any C-function with compact support in S.
By assumptions, there exist positive constants x, x, c, c, c and

a function L(t) such that

c, w c, c, A(x, t’)--A(x, t)

L(t) , 0 t t’ T

for all real vectors and for any bounded domain in S. Here L(t)
is nonnegative and non-increasing on the interval 0tT (note that,
if K(t) is summable on (0, T), L(t) is also summable on it). Then by a
familiar argument we may construct sequences of unctions {A(x, t)},
{A(x, t)}, {B(x, t)}, {B(x, t)} which are infinitely differentiable and
converge in Lo(S) as m to A(x, t), A(x, t), B(x, t)w, B(x, t),
respectively and satisfy

(25) A(x, ) < v, BT(x, ) < c, BT(x, )1 < c,

for all real vectors $ and for any bounded domain in St.
We now consider the backward Cauchy problem of the equation

with initial conditions
(27) (x, T) 3(x, T) / 3t 0

In virtue of the conditions (24) and the summability of L(t), it is
easily to show the fact that 3/3x, are uniformly bounded in
L[oo(Sr), from which the validity o the relation (24), i.e., the conclu-
sion of Theorem 2, immediately follows.

Remark. If we are concerned with the equation (15) with con-
ditions (19) replaced by
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(19’) , 3A(x, , u, p)/3p3p$$< 0,

we must replace the inequality (22) by

(22’) v(x, t’)-v(x, $) <J(t) for
’--
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