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35. Notes on Semilattices of Groups

By Sandor LAJos
K. Marx University of Economics, Budapest, Hungary

(Comm. by Kinjird KUNUGI, M. J. A., Feb. 12, 1970)

Recently a lot of ideal theoretical characterizations for semigroups
which are semilattices of groups were given by the author (see [2],
[8]). Continuing these investigations several further criteria will be
established here. For the terminology we refer to A. H. Clifford and
G. B. Preston’s books [1] and for the definition of (m, n)-ideals see the
author’s paper [5].

Theorem 1. An arbitrary semigroup S is a semilattice of groups
if and only if the relation
(1) LNB=LB
holds for any bi-ideal B and for any left ideal L of S.

Proof. Necessity. Let S be a semigroup which is a semilattice
of groups. Then it is regular and every one-sided ideal of S is two-
sided (see Exercise 4.2.2 in [1], I). In this case every bi-ideal B of
S is also a two-sided ideal of S by a recent result of the author [4].
Therefore (1) follows from the well known regularity criterion :

(2) LNR=RL
for any left ideal L and for any right ideal R of S.

Sufficiency. Let S be a semigroup with property (1) for any left

ideal L and for any bi-ideal B of S. Then (1) implies

(3) SNR=SR
for any right ideal R of S, and
(4) LNS=LS

for any left ideal L of S, that is, every one-sided ideal of S is two-
sided. Thus we obtain that A NB=AB for any two two-sided ideals
A, B of S, i.e. Sis regular. Next we show that S is a centric semi-
group. Indeed, for any element a of S the equality (1) implies

(5) aS=SNaS=S8aSs,
and
(6) Sa=SaNS==SaS.

(5) and (6) imply that a.S=Sa for any element o in S. It is known"
that the idempotent elements of a centric semigroup lie in the center,
thus ef = fe for any two idempotent elements of S. Therefore S is an
inverse semigroup every one-sided ideal of which is two-sided. This
means that S is a semigroup which is a semilattice of groups.

1) See Clifford and Preston [1], II.
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The following criteria can be proved analogously.

Theorem 2. A semigroup S is a semilattice of groups if and only
if any one of the following conditions holds:

(i) LNQ=LA for any left ideal L and for any quasi-ideal Q of S.

(ii) Q@NR=QR for any right ideal R and for any quasi-ideal Q
of S.

(iii) BNR=BR for any bi-ideal B and for any right ideal R of S.

More generally we have the result as follows.

Theorem 3. For a semigroup S the conditions (A)-(C) are equi-
valent :

(A) S is a semilattice of groups.

(B) ANB=AB for every (m, m)-ideal A and for every (n, 0)-ideal
B of S.

(C) ANB=AB for any (0, n)-tdeal A and for any (m, m)-ideal B
of S (m and n being arbitrary fixed positive integers).
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