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1. Introduction. Let G be a locally compact abelian group and
let T be a continuous automorphism of G. Then the continuous affine
transformation T'(a), where a is an element in G, is defined by T'(a)(x)
=a-T(x) for x in G. In this paper we shall study some topological
properties of G which has a continuous affine transformation 7'(a) such
that there is an element w in G such that {T(e)"(w)|n=0, +1, +2, .-}
is dense in G. More precisely, the study has been derived from the
following problem. Can a continuous affine transformation of a locally
compact but non-compact abelian group have a dense orbit? In the
sequel the problem shall be solved negatively in a sense. Studies which
are closely related to this problem appear in [2], [3], [4], [5] and [6].

2. Locally compact abelian groups with dense orbits.

Lemma. Let T be a linear transformation of the n-dimensional
real euclidean space R* onto itself. Then any affine transformation
T(a) (& € R") has no dense orbit in R except for the trivial case n=0.

Proof. T can be considered as the linear tansformation of the
n-dimensional complex euclidean space K" onto itself in the natural
way. Then from the matrix theory T can be represented by a trian-
gular matrix under some suitable basis {e,, e, - - -, €,} of K".

2122 *
T=
0 ",
An
An elementary calculation shows that T-! is also represented by the
following triangular matrix under the same basis {e, e,, - - -, €,}.
AT,
1 22.1 .
T =
0 "
A7t
Fix elements @ and w in R™ and let
G=,6+ 08, + - - - +pey, a,c K for i=1,2...,p
and
w=pe+ P+ -+ P8,  ByeKfor j=1,2,...,q,
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where a,#0 and 3,#0. Then
T(@w)=(ae,+ - -+ +ape,) +(xe 4 - - - +*eq—1+‘Bq'zqeq)
and
T(@ '(w)=(y1e,+ - - - +7pp) + (ke + - - - +xe, 1+ A7),
where 7€+ +rpep=T—l(—a), 80 7,= —a,,l,‘,l;&O.
Put r=max {p, q}.
Case I. If A,+#1 then

*61+°'°+*9r-1+[3'i (‘Br'— @y )'l"lar ]er

if k=0,
*€,+ - - - +xe,_+a,e, if k=0.
This implies that if |4,|#1 then the closure of {T(a)*(w)|k=0, +1,
+2- ..} is countable, whence the orbit of w under T'(a) can not be dense
in R provided |2,|#1. Thus if {T(a)*(w) | k=0, +1, +2, - ..} is dense
in R" then |4,|=1 and {T(®)*(w)+iT(@)'(w)|k,j=0, =1, +2, ...} is
dense in K*. But in this case

T(a)*(w) +iT(@) (W) =%e, + - - - +¥e, ,+ [zk (

T(a) (w)=

7

+—1€L,z,_]e’+i['u<ﬂ’ i ,z) 1arz,]ef

=%@+ -+ +*e,_1+0,6,.
Therefore |d,| is bounded, which is impossible.
Case II. If A,=1 then
x€ + -+ +xe,_+ (8, + ka,)e, if k+0
T(@)*w)= { x4 -+ +xe,_ +a,e, if k=0,
Thus in order to see that {T'(a)*| k=0, =1, +2, - - .} can not be dense in
R~, it suffices to apply an analogous argument as in Case 1.

The proof is complete.

Theorem 1. Let G be a locally compact abelian group and let T(a)
be a continuous affine transformation of G such that there is an element
w tn G such that {T(@)"(w)|n=0, +1, +2, ---} is dense in G. If the
connected component G, of the identity in G is not an open subgroup
of G then G is compact.

Proof. Since T is bi-continuous by [5, Lemma 2], G, is invariant
under 7. Let 0 be the canonical map from G onto G/G, and let Z be
a general element of G/G, such that 0(x)=% (x e G). If T is defined
by T(®)=0(T(x)) for % in G /G, then T is well-defined and a continuous
automorphism of G/G,. It is clear that 7'(@) is a continuous affine
transformation of G/G, such that {T(@)"(w)|n=0, +1, +2, - . .} is dense
in G/G,. Since G,is not an open subgroup of G, G/ G, is a totally discon-
nected non-discrete abelian group, thus G/G, is compact by [5, Theorem
1]. Let V be a neighborhood of the identity in G such that the closure
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of V is compact, and let H be the subgroup of G which is generated
by V. Then H is an open subgroup of G, whence G,C H. Since G/G,
is compact, G/ H is finite. Thus it follows that G is compactly generated.
The well-known structure theorem for a locally compact, compactly
generated abelian group (see for instance [1, Theorem 9.8]) implies
that G is topologically isomorphic with R? x Z¢x F' for some nonnega-
tive integers » and ¢ and some compact abelian group F', where Z is
the additive group of integers. But in the present case ¢=0, i.e., G
is topologically isomorphic with R?xF. For if g0 then G/R?xXF
=77 ig not finite, which is not impossible since R? X F' is an open sub-
group of G. Clearly F is invariant under 7. So T induces a conti-
nuous automorphism 7* of G/F = R? such that the affine transformation
T*(a*) has a dense orbit {T*(a*)"(w*)|n=0, +£1, +2, ...} in R? where
o* and w* are elements in R? such that e € a* and w € w*, respectly.
On the other hand, since T* is a continuous automorphism of R?, it
satisfies T*(ax*)=aT*(x*) for ¢ € R and x* ¢ R?, i.e., T* is a linear
transformation of the p-dimensional real euclidean space R? onto itself.
So by Lemma, p=0, i.e., G is topologically isomorphic with a compact
abelian group F. This completes the proof.

Theorem 2. Let G be a connected locally compact abelian group
and let T(a) be a continuous affine transformation of G such that there
is an element w in G such that {T(a)"(w)|n=0, £1, +2, - ..} is dense
in G. Then G is compact.

Proof. Since G is connected, it is compactly generated, whence
it is topologically isomorphic with R? X F' for some nonnegative integer
p and some compact abelian group F'. Then the same argument as in
the proof of Theorem 1 can be applied in order to prove that G is
compact. The proof is complete.

The hypothesis that G, is not an open subgroup of G is necessary
in Theorem 1, provided G is not connected (see [5, Remark 1]). But
if T itself has a dense orbit in G then it is not necessary, i.e., we have
the following.

Theorem 3. Let G be a locally compact abelian group and let T
be a continuous automorphism of G such that there is an element w
in G such that {T™(w)|n=0, +1, £2, ...} s dense in G. Then G is
compact.

Proof. Let G, be the connected component of the identity in G.
Then T induces a continuous automorphism 7' of G/@G, which has a
dense orbit in G/G,. Thus by [5, Theorem 3], G/G, is compact. Then
it is a routine matter to show that G is topologically isomorphic with
R? X F for some nonnegative integer p and some compact abelian group
F. The proof is now obvious.
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Theorem 4. Let G be a locally compact abelian group with o
countable open basis and let T'(a) be a continuous affine transformation
of G which is ergodic with respect to o Haar measure on G. Then G
18 compact whenever one of the following three statements is true:

1) The connected component G, of the identity e in G is not an
open subgroup of G.

2) G is connected.

3) T(a) is an automorphism, i.e., a=-e.

Proof. By the ergodicity of T'(a) and the second countability of
@G, the orbit of # under T'(a) is dense in G for almost all z in G. Thus
Theorems 1, 2 or 3 can be applied in order to prove that G is compact.
The proof is complete.

Theorem 5. Let G be a locally compact abelian group which has
an element a such that {a"|n=0, £1, +2, ...} is dense in G. Then
G s compact whenever one of the following two statements is true:

1) The connected component G, of the identity in G is not an open
subgroup of G.

2) G is connected.

The proof is obvious from the above.

Remark 1. In Theorem 3 the hypothesis that G is abelian is not
necessary, i.e., if G is a locally compact (not necessarily abelian) group
which has a continuous automorphism with a dense orbit then G is
compact. In order to prove this it suffices to apply analogous argu-
ments as in [2] and [4], by virtue of Theorem 3 and [5, Theorem 3].
We omit the details here.

Remark 2. Concerning Theorem 4 it seems worth to notice that
if G is a locally compact group which has an ergodic continuous auto-
morphism with respect to a Haar measure on G then G is compact [4].

The author is greatly indebted to Prof. Shigeru Tsurumi for his
encouragement during the preparation of this paper.
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