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Introduction. The fundamental potential functions on open
Riemann surfaces like Green function, harmonic measure etc. show
very specific boundary behaviors provided the surfaces have smooth
boundaries. But on general surfaces the situation become complicated,
actually one has first to define the boundary values or normal
derivatives at the ideal boundary.

We have shown [5] that canonical potentials, especially harmonic
measures assume constant values quasi-everywhere on each component
of Kuramochi boundary. For other compactifications such a property
was investigated, afterwards by Kusunoki-Mori [6], Ikegami [4] and
Watanabe [9] (cf. also Nakai-Sario [8]). At the same time it was
inquired whether this boundary behavior would characterize those
functions, however the question is still open. The purpose of this
paper is to give some comments to this problem from the viewpoint of
normal derivatives.

1 In the following we shall use some terminologies and notations
without repetitions (cf. Constantinescu-Cornea [2] and Ahlfors-Sario
[1]). Let R be a hyperbolic Riemann surface and R* a resolutive
compactification of R. Let co be the harmonic measure of the ideal
boundary zI=R*--R with respect to a point a e R. The carrier of co
coincides with the harmonic boundary 0 of z. For fixed a-ao we
denote Wo by w, and by L() the Hilbert space of real-valued functions
on square integrable with respect to dw.

A resolutive compactification R* is called D-normal (Maeda [7]) if
every u e HD(R) (space of harmonic Dirichlet functions on R)can be
expressed as

u(a)-;f dwa=H(a)
with a resolutive function f on z/. The compactifications of Wiener,
Royden, Martin and Kuramochi are all D-normal and of type S. In
the sequel we shall assume R* is D-normal, unless otherwise stated.
The mapping

uf
is linear and one-to-one (cf. [6]). We call f the boundary value (or
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boundary function) of u and denote it by t(=H-u in [6]). In four
important compactifications above it is known that actually turns out
to be the limiting value of u in respective senses (cf. [6], [4]).

The following act (cf. Doob [3], Maeda [7]) will be used later.
Lemma 1. If u e HD(R), then t belongs to L(zl) and if u(a0)--0,

with a positive constant M independent of u.
2. We consider a partition P-(A.} of the ideal boundary

such that each A consists of mutually disjoint connected components
of z/. For the real Hilbert space Fa-(du; u e HD(R)} let

Fe-(du e Fa ; is constant o)-a.e, on each part z/. of
where the exceptional sets are subsets of a set of harmonic measure
zero on A. Evidently F-(0} for the identity partition I. Now we
have

Theorem 1. Fe is a Hilbert subspace of I’. Moreover if the
compactification R* is of type S, then Fe(P)Fa, in particular
Fa for the canonical partition .

This is seen immediately from Theorems 3, 4 (or the proofs) in
[6] and it is our main concern whether Fe would coincide with (P)F.
Two spaces coincide if the partition is finite. In the following we shall
assume that R* is of type S as well as D-normal.

:}. Let P be a partition of /and denote

M= { e L(A); .doo=O or every A. in P}.
It is easily seen that M is a closed subspace of L2(A). Let F be any
closed subspace of F, then we say that a function u e HD(R) has F-
normal derivative if there exists e L(z/) such that

(dv, du-[ Vdw, for any dv e F

where (dr, du}-[ dvA*du. Then clearly e M. Note that for
JR

dv boundary function V is determined up to a constant, but does not

matter since [ dw-O. We shall write Ne(F)-{du e F; u has a F-
J

normal derivative e Me} and N(F)=N(F).
Lemma 2. Let F be a closed subspace of F. Given q e Mp,

there exists due Ne(F) such that is the F-normal derivative of u.
Further N(F) is dense in F.

Proof. Consider a linear functional on F"

dvf dve F

We may assume v(a0)=0. By Lemma 1 we have then
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<= -< MII I1 dv I1, hence the linear unctional on F is

bounded and by Riesz theorem there exists du e F such that_
=(dr, du} for any dve F, which implies that is a F-normal deriv-
ative of u.

To show that N(F) is dense in F suppose the contrary. Then
there is dvo e F such that v0(a0)=0, v00 and (dvo, du}-O for any
due N(F). While

odw-vo(ao)=O and V0( 0) L()

so V0 e M and it is a F-normal derivative o some u0 with duo e N(F),

hence 0-(dr0, duo}=.[V]dw#-O,_ which is a contradiction.

We shall denote by B()(L()) the set of the boundary functions
of HD(R) and by C() the set of (bounded) continuous functions on
If our (D-normal) compactification R* is regular [7], namely if the
set B() C(z)is dense in C() in the uniform convergence topology,
then the F-normal derivative is uniquely determined w-a.e, and the
mapping du--. gives an isomorphism of N(F) onto MR. The com-
pactification of Royden and Kuramochi are regular.

Lemma :}. If R* is regular, then the set B() is dense in L().
Indeed, the set B(zl) C(zl) is clearly dense in C() in L-norm and

C(zl) is so in L(zl), hence B(z)(B(z/) C(zl)) is dense in L(i).
4. Now we shall show the following

Theorem 2. F=(P)F if and only if for any due Fp there
exists a sequence {don} in (P)F such that (O)lll)n--llj---O for n--c
() dO)n IIR are uniformly bounded.

Proof. I Fe=(P)Fa, or given due F, there exist don e
such that Ildw-dul]-O and Wn(ao)-U(ao). Then (a) ollows from
Lemma I and (fl) is trivial.

To show the converse suppose the contrary. Then there exists
due Fe such that du(O)is orthogonal to (P)F. For this du take
a sequence (dw} in (P)I’ satisfying (a) and (fl). Consider any
dve N(F) and let e M be the Fe-normal derivative of v, then since

converge weakly to in L(zl) we have

(du, dv}.
While, by Lemma 2 N(F,) is dense in Fe, it follows under the condi-
tion (/9) that {dw} converge weakly to du in Fe (cf. [10]). Hence
Ildull=lim do)n, dU}R--O and du--O, which is a contradiction.

As is seen from the proof above we have the following
Corollary. Suppose N(F,)=Fe. Then Fe=(P)Fa if and only
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if for any du e Fe there exists a sequence {dw} in (P)F with the
condition (a).

In a very special case it was shown that one can find a sequence
{dw} satisfying (a) and () ([9] Theorem 2).

Next we shall give a sufficient condition for N(F)=
Theorem 3. If the set B(A) is dense and of the Baire second

category in L(A), then every u e HD(R) has F-normal derivative,
hence N(F) F for any F F.

Proof. Take any duo e F, then there is a sequence {dun} in
N(F) which converge strongly to duo. Let be F-normal deriva-
rives of u and consider the linear functionals on L(A)

Tf [ fdw, n-1,2,..
J

As e L(A) the T are bounded, moreover for each f e B(A)Tf]
M(n--1, 2, ...), M being a constant dependent only on f. Because,

if f e B(A) then f= with some du e F and (du, dun}=j’fndW,_
hence Tf] du,duM[du where M is a bound of {[dun]]}.
Now since B(A) is of the second category in L(A) we know that the
norms ]]T]] are uniformly bounded by Banach theorem and the
resonance theorem (cf. [10]). While, for each f- e B(A) the limit

lim Tf lim (du, dUn}R (du, duo}R
exists and B(A) is dense in L(A), hence lim Tf exist for all f e L(A)

and Tf=lim Tf is a linear functional on L(A). Therefore by the

representation theorem there exists * e L(A) such that

for all f e L(A). In particular for any dueF we have

T=lim T--(du, duo}
This means that u0 has a F-normal derivative *. q.e.d.

Remark. About the assumption that B(A) is dense in L(A), 1) it
is always satisfied if R* is regular (Lemma 3), 2) it can be replaced by
a weaker condition that B(A) is dense in a sphere in L(A).

5. The semi-exactness ( *ud= OU ds=O for any dividing cycle
Jn

T) suggests the following

Lemma 4. Let dve [(P)F]=(P)F. If v has a F-normal
derivative , then belongs to M.

Proo. First we note that the set {; Ildw>0} is countable,

since e L(A)L(). So let {A} be a countable number of parts of
P on which the integral is positive. For each A let =Z. e L(A),



No. 3] Boundary Properties of Harmonic Dirichlet Functions 281

Z being the characteristic function of z!. Take a decreasing
sequence of non-compact subregions G(-l,2, ...) in R which
determine / and let

{/ zL G (closure in R*)}.
Then for each we have a harmonic measure dw (P)F such that

w-I a.e. on and=0 a.e. on -. Hence [ wdw=dw,dvR
J

=0. whilew a.e. () it follows by the dominated conver-
gence theorem that

which implies that e Me.
Now we shall consider a restriction to the ideal boundary-,

namely assume that the harmonic measure is decomposable"
(,) if Ec and w(E)=O, then w(E)-O.

For example, it is satisfied if consists of a countable number of
parts {}.

Theorem 4. If R* is regular and satisfies the condition (,), then
it occurs that Fe=(P)C or the set B() is of the first category in
L()

Proof. Let dve Fe be orthogonal to (P)C. Suppose that v has
a F-normal derivative , then it 2ollows by Lemma 4 and (,)that

e Me and =0 w-a.e, on-n. The V is constant w-a.e, on each

and

i.e. gvO. By Theorem 8 this completes the proof.
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