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Boundary Value Problems or Some Degenerate Elliptic
Equations of Second Order with Dirichlet Condition

By Akira NAKAOKA

(Comm. by Kinjir5 KUNUGI, M. J. A., March 12, 1970)

1. Introduction. Let t2 be a domain in R whose boundary is a
smooth and compact hypersurface. We deal with the following
differential operator defined in/2"

(1.1) A,(x,D)=--p(r),=, x a Ox + b(x).3x. +c(x)

where r denots the distance from x e/2 to F, the boundary of 9, and
we assume that

(1.2) a(x)$>=l$1 for any real n-vector (a--),
J,k=l

and p(t) (t e R+) satisfies
1) p(t)e C(R+)C(R+) and O<p(t) with p(t)=O only at t=O
2) p(t)- is integrable in (0, s) for any s>__0, and p’(t)<_O near t=0
3) Ip’(t)l_Ct- and Ip"(t)[<=Ct-(O<a<l) near t:0

4) t-iP(s)-dsdt and p’(t)p(t)- [p(s)-dsdt are finite

for any a>0 and if 9 is unbounded, we assume moreover
5) when t--.c, O<K<=p(t) and p’(t), p"(t) remain bounded.

If we take a function to be equal to t near t=0 as p(t), we can see
easily that it satisfies the above conditions.

For the coefficients of A,(x,D), we assume that a(x) and b(x)
are all in _(9), and c(x) in C(9) with Ic(x)]_MIp’(r)lp(r)- near F,
and if 9 is unbounded, we assume that c(x) remains bounded as

Now let us introduce some Hilbert spaces in which we develop our
arguments.

Definition

(1.3)
is finite.

Definition 1.2.

We say u(x) belongs to L(tg, p-) if and only if

u II0,ta-1: lu(x)[p(r)

u(x) is said to be in H(tg, p), if and only if

(1.4)

is finite.
One of our main results is
Theorem 1.1. Under the conditions stated above, the equation

IA,(x, D)u+ 2u-- f(x)(1.5)
tul =0
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admits a unique solution u(x) in H(/2, p) ( (/2) for any given f(x) in
L(9, p-), if0 is suliciently large.

For the adjoint equation, we have
Theorem 1.2. The same result as Theorem 1.1 is valid for

(1.6) {A* (x, D)v +v=g(x)
VireO,

where A(x, D) stands for the formal ad]oint operator of A(x, D) with
respect to the inner product of L(9, p-).

If 9 is bounded, we can see that the Fredholm alternative theorem
holds.

In Section 4 we make mention of the application of our results to
the mixed problems for the hyperbolic equations of second order.

2. Weak solution. We solve (1.5) by the so-called variational
method. For this we prepare some lemmas.

Lemma 2.1. If u(x) belongs to HI(, p), then the trace of u(x) to
F exists and it holds for any positive
(2.1)
where Ilull means the L(F) norm of the trace of u(x).

Lemma 2.2. Let u(x) be in H(9, p), then the traces of Du(x)
exist and it holds for any positive
(2.2) Du I[r 5 el] u [l. + C(e)I] u ll0, (] 1, ..., n).

Lemma 2.. Suppose u(x)
holds for any positive

Lemma 2.4. Let u(x) and v(x) be in

(2.4) p’(r)p(r)-luvldxS(iluli+llvll)+C()(llull+llvll)
holds.

Lemma 2.5. Let u(x) and v(x) be in ,(9), then for any first
order differential operator D, we obtain with an arbitrary positive

where ( )_, denotes the inner product of L(9, p-).
The final lemma is
Lemma 2.6. If u(x) is in (9), then we have

(2.6)
(2.7) u ]10.-, 5 u II + c()I] u 0,
where e is an arbitrary positive number.

Now let us define the weak solution of (1.5).
Definition 2.1. We say (x) in 2(9) a weak solution of (1.5),

if u(x) satisfies for all v(x) in

:1 Jl

+ (cu, v)_,+ (u, v)_, (f, ).
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That B[u, v] is well-defined follows from Lemma 2.4, Lemma 2.5
and Lemma 2.6, and using these lemmas again, we obtain

Proposition 2.1. Let u(x) and v(x) be in L([2), then it holds
(2.9) IB[u,
(2.10) cllul [<_Re B[u, u],
if 0 is large enough.

Thus by virtue of the well-known lemma of Lax-Milgram, we have
Theorem 2.1. If0 is sufficiently large, then (1.5) has a unique

weak solution for any f(x) such that p(r)-f(x) lies in (/2)’, especially

for any f(x) in L(9, p-).. Dierentiability theorem. In this section we are concerned
with the differentiability of the weak solution of (1.5). Since the
question is local, we take R ={(x, y); x0 and y e Rn-} as 9, and we
may assume p"(x)0 over R without loss of generality.

(R then itLemma ,1, Let u(x, y) e C(R) and v(x, y) e +,

holds
(3.1) (p(x)u, v)=(p’(x)u, v)--(p(x)u, v)

Thus passing to limit, we obtain
Lemma .2. If u(x, y) is in (R+), then it follows

(3.2) (p(x)u, =(p"(x)u, u)--(p(x)u, Ux).
Lemma .. Let u(x y) be in (R

(3.3) u I0..-. u I. + c()
Lemma .4. Let u(x,y) be in (R), the it holds

(3.4) ](p’(x)p(x)-u, u)l, l(Du,
where e is an arbitrary positive number and D stands for an arbitrary

first order differential operator.
Let us denote by X the hemi-sphere of radius J with its centre the

origin: X={(x,y);x2+]y2<J and
Lemma 3.5 (Poincar). Let u(x, y) be in L(R+) C’(X), then it

holds

(3 5) U lo, < C() p(x) dx+ p(x) 3u dxdy

where C()oO as 0.
Take J sufficiently small, then we may assume that our concerning

operator is of the form in X

(g.6) ’ +firs order operator,
after a suitable local ransformation o independen variables, and we
may assume, by virtue of (1.),

,=gVclvl for any V e R-(8.7)
(aood>0, c>0 and =).
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The following lemma is obvious.
Lemma :.6. For any u(x, y) in 1 (R) it follows

c dxdy.

Let us denote
B ((x, y) x + y <

and take an arbitrary real-valued function fl(x, y) belonging to C(B).
Now let u(x, y) be a weak solution o (1.5) with 9=R and let

f(x, y) be in L(R, p-), then we see
(3.9) Au=f u
as a distribution, and multiplying fl(x, y) to both sides we obtain
(a.o) A(u) fl(f u)- ifl, A]u.

Lemma .7. For any u(x,y) in 2(R+), we have
L(

Put flu=v and fl(f-u)-[fl, A]u=g, hen by Lemma 3.7 we have
(3.11) Av=g

(R ’(Z) and g L(Zwhere v L +
We denote by H(Z, p) the completion o C(Z) in H(, p) and

denote by H(, p) its dual space, which is a space of distribution.
Lemma .8. If u(x, y) is in 2(Z), then Au is in H(, p).
The following proposition is essential in his section.
Proposition .1. I/ is suciently small, then lot any u(x, y)in

2() we get
(3.12) ]]A,u[]_,,
where ]]A,u]]_,, denotes the H;(X, p) norm of A,u.

Proof. By Lemma 3.2, Lemma 3.4 and Lemma 3.6, we have
(3.13) Re (Au,
and by virtue of Lemma 3.5, we obtain
(3.14) Re (A,u,
Hence with the aid of Lemma 3.8, we can complete the proof.

Lemma .9. If f(x, y) is in L(R,p) then the difference
quotients h-(f(x, y, ..., y_, y+ h, y+, ..., y_)-f(x, y))(1 < ] < n

1) converge to 3f in H;(R+, p).

Thus applying Proposition 3.1 to v in (3.11) and using Lemma 3.9,
we applying Proposition 3.1 to v in (3.11) and using Lemma 3.9, we
can prove

Theorem .1. If u(x, y) e (R+) satisfies Au- f with

f e L(R, p-), then u(x, y) belongs to H(R, p).
Corollary .1. If u(x) e (9) satisfies A,u=f with f e L(9, p-),

then u(x) belongs to H(9, p).
4. Application to mixed problems for hyperbolic equations. In
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this section we state an application of the results obtained in the
previous sections to the mixed problems for hyperbolic equations

u-Au/f(t, x) in (0, T)
(4.1) u(O, x)-u(x), u(O, x)--u(x)

u(t, x)lr=0 on [0, T)F
We can show that (4.1) is well-posed in the following sense:
Theorem 4.1. Let b(x) (]-1,...,n) be all zero, then for any

f(t, x)e (L(9, p-l)) and for any (Uo, ul)e
there exists a unique solution u(t, x) of (4.1) such that (u, ut, ut.) is
continuous in H(9, p) H(9) L(9, p-), and the energy estimate

(4.2) +o (11 f(s)Iio,,-, /

holds/or any t [0, T].
The more detailed exposition including the related topics will be

published elsewhere.

References

1 S. Mizohata: Quelques problimes au bord, du type mixte, pour des equa-
tions hyperboliques. Coll6ge de France, 23-66 (1966-67).

[2] --: Theory of Partial Differential Equations. Iwanami (1965) (in
Japanese).

[3 A. Nakaoka: Mixed problems for degenerate hyperbolic equations of
second order. Proc. Japan Acad., 41, 706-709 (1969).

4 --: On Dirichlet problems for some degenerate elliptic equations (to
appear).

5 K. Yosida: An operator theoretical integration of the wave equations.
J. Math. Soc. Japan, $, 77-92 (1956).


