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A Note on Norms o Compression Operators
on Function Spaces

By Tetsuya SHIMOGAKI
Department’ of Mathematics, Tokyo Institute of Technology

(Comm. by Kinjir5 KuNU(I, M. $. A., March 12, 1970)

1. In what follows, let (X, I1" 11) be a rearrangement invariant
Banach function space, i.e. a Banach space of Lebesgue integrable
functions over a (finite or infinite)interval (0, l) which satisfies the
following conditions"

(1.1) Igl<lfl, f e X implies g e X and Ilgll<llfll;
(1.2) 0gf’, IIfll<_M, n>_ 1 impliesf=f e X and Ilfll--suPllfnll;

n21 nl

(1.3) If O<_f e X and g is equimeasurable with f, then g e X and

From (1.2) it follows that the norm I1" on X is semicontinuous,
i.e. Ogf f,f,feX implies llf[l=sup[Ifll. We denote by a (a>0)

the compression operator on X"
(1.4) aaf fa, f e X,

where f is given by f(x)=f(ax), if axgl, and f(x)=O otherwise,

Since X is rearrangement invariant, the linear operators a, a>0 are
bounded, and Ilall-<l, if a_>l, and l_<lla, ll_<a-, if 0<a<l[8].
The values of Ilall, a0 play an important role to describe some in-
teresting properties of the function space X concerning some interpola-
tion properties for classes of linear operators [4, 8, 9], the Hardy
Littlewood maximal functions [7], or the conjugate functions [1, 5].

Now we put for a>0 and n>_ 1

where S denotes the set of all positive simple functions with at most
n-distinct nonzero values. Then we have for every a>0

When X is an A(cf)-spaee or an M(p)-spaee [2], ’-[lall holds; When
X is an Orliez space L, we have ’--Ilall [4]. Since I1"11 on S is serni-
continuous, a sup , holds for every a> 0. Now the following

n>l

questions are naturally raised"
i) For every a> O, is a II-- ’ true ? For an arbitrary X, does

there exist an n>_l such that Ilal]--’ holds for each a>0?

D Ill denotes the function I/()I, (0, l). f<_g means that f(x)<_g(x) a.e.
on (0, 1).
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ii) For an arbitrary X, do there exist an M 0 and an n>_ 2 such
that IlallM’ holds for every

The questions above are closely related to a problem concerning
the Hardy Littlewood maximal unctions. X is called to have the
Hardy Littlewood property and is denoted by X e HLP [3], if X satis-
fies that f e X implies ?(f)e X, where (?(f) is the Hardy Littlewood
maximal function of f. For any x>0 we put x’--min(x, l) and

(1.6) vx(x)=r(x)=ll Z (0.x,)

and call it the fundamental function of X. Since X is rearrangement
invariant, v(x)=llZll holds for any measurable set e(0,/) with
mes(e)=x. Recently R. O’Neil presented the following problem

iii) Is it possible to characterize the property X e HLP in terms
of the fundamental function r of X?

This problem can be stated in terms of compression operators,
since it is known [7, 9] that X e HLP if and only if

(1.7) lim
a-0

In this paper we shall show that there exists a rearrangement
invariant Banach function space X failing to satisfy (1.7), which has,
however, the same fundamental function as the space L2. Since
L e HLP, this space gives the negative answer to the problem iii). At
the same time, in view of y_<n’ and y=sup{r(a-x)/r(x);
a0, it appears as a counter example to the question ii) (hence to i)
also).

2. Let/-1 and define the functions , 0a_<l by
(2.1)

Let n:>2 be fixed, and put 0--0, q=2-2(-).n-, and Ot--2n(-)’O
:2n(-n).n-. Also define the functions w by

(2.2) w-n-1/2([_) .)-=n-1/2 .,
i=l

.Z 1<i<n. By (2 1) and (2.2) we havewhere x. (_,.),

(2.3) : :dx__2n(-n).n-1/2.(2n--l)-,
We denote by (f, ) the integral ,fd. hen, we have

(..4) o),:)<_-1/2+-1/2(.-1)-, l_<u___.

In fact, O)n, .,}gn-1/2<x., .>+ n-1/2(’, .?<n-1/2+n-1/2a-
_< n-1/2 + n-1/2(2-1)-. From this we can derive further by an element-
ary calulation

(2.5) (w,

_
n-1/2+ n-1/2(2- 1)-_< 1, 0<a_ 1.

Also we have obviously

2) The author expresses his thanks to Professor J. Ishii for informing him
of this problem raised by Professor R. O’Neil.
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(2.6) <o, o)> I-- 2-.
Next, we estimate the value <an-,W, (o> from above. Decompos-

ing a-w into (o / ," where

=n- a;Z(_,,_,, w =n- a;Z_,, and
=i u=l

_=_+--_, e get

<.-., .>=<C,.+<C,
--1

<., .>+.- ;(.-I)(-_)
=1

--1

1 + (--1)- 2-"(--_),
=i

hich implies
(2.7) <6._., .} 1 + 2-"( I).

Since <c._,., >=<., ._}, e obtain by (2.5)
(2.) <._,.,} + (2-- )-.Thus, for every 2, e can de,he . by (2.2) satisfying all the con-

ditions (2.4)(2.8). No e pick up a subsequence {.} of {.} in
such ay that +>2"B>., ul, and put =.. Then e have

{{,)Nr+z(-l)-, o<1;

,)N2, if >.
he las inequality of (2.9) is derived from (2.g) and he fact that

,Zo,= and NZo,eN;, where = defined above for =.
Puing g=r, we get from (2,7), (2.8) and (2.9)

(.1o (,)N +-(m-;

Now let be the set" {" 0<I}U{" 2}, and define a

X of integrable unetions by

(2.11) X= {f" supcf*dxo<} o
A(c),

where f* is the decreasing rearrangement of the unction [f[. The

space X, equipped with the norm" [f[=sup[cf*dx, fe X, is a rear-

rangement invariant Banach function space including the space L.
Since, in virtue of (2.9), eX and ]]=1 for all 0<1,
=r(). On account of (2.10), e X and limgl. On the other

hand, lim}g] =lim]l by (2.9). Hence, lim]]]-l. Con-

sequently, the undamenal function of X coincides with of the
space L, but the following condition (2.12) fails to be true in X"

(2.12) lim ]=0.
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The conjugate space Y=. of X is a rearrangement invariant Banach
function space in which the condition (1.7) is violated, since the con-
ditions (1.7) and (2.12) are mutually conjugate. Since Y is also rear-
rangement invariant, the fundamental function vr(x) of Y is vz(x)-. x,
hence vr(x)=vz(x)= x1/2 for all x e (0, 1). The fundamental function of
Y coincides with that of L, but the condition (1.7) is not satisfied.
Therefore, the construction of the space Y gives the negative answer
to the problem iii), and hence both X and Y provide counter examples
to the question ii) at the same time.
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