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49. Notes on Finite Left Amenable Semigroups™

By Takayuki TAMURA
University of California, Davis, California, U. S. A.

(Comm. by Kenjiro SHODA, M. J. A., March 12, 1970)

Let S be a semigroup and B(S) be the Banach space of all bounded
complex or real valued functions on S. A semigroup S is called left
[right] amenable if there is on B(S) a mean m, that is, a linear
functional m for which |m| =1 and m(x) > 0 if x > 0 on S and which
is invariant under left [right] translations of elements of B(S) by
elements of S, in other words, m(af)=m(f) where (af)(x)=f(ax),
feB(S), xe S, a complex or real numbers, S is called amenable if S is
left amenable and right amenable.

In (81), at p. 11 of [2] we can see the following proposition due to
Rosen [5]:

Proposition 1. A finite semigroup S is left amenable if and only
if it has a unique minimal right ideal R. Then this right ideal is the
union of the disjoint minimal left ideal L,, - - -, L, of S; each left ideal
18 a group, and all these groups are isomorphic. If u, is the identity
element of the group L, then uwu,=u; for all ¢,j<k, and if U is the
set of these u;,, R=L,x U, and the left invariant means on S are
supported on R and are exactly averaging over L, crossed with arbi-
trary means on U.

The statement concerning the minimal right ideal means that the
right ideal is a right group [1], i.e. the direct product of a group and
a right zero semigroup. Furthermore it is the kernel i.e. the minimal
ideal. In this paper the author notices that a finite left amenable
semigroup is characterized by left zero indecomposability of ideals.

By a left zero semigroup we mean a semigroup satisfying the
identity xy=«. Every semigroup S has a smallest left zero congruence
00> that is, o, is a congruence such that S/ p, is a left zero semigroup,
and p, is contained in all congruences p such that S/p are left zero
semigroups. If p, is the universal relation, p,=SX S, then S is called
left zero indecomposable. Refer undefined terminology to [1].

Theorem 2. Let S be a finite semigroup. The following are
equivalent :

(1) Ewvery ideal of S is left zero indecomposable.
(2) The kernel K of S is a right group, |K|>1.
@) S has a unique minimal right ideal.
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To prove the theorem, we need a lemma. Let D be a completely
simple semigroup and let D=H(G; 4, I; P) be its Rees regular matrix
representation, G a group, P a sandwich (I, 4/)-matrix over G. In
other words

D={(x; A, p);xecG,led, pel}
and the operation is defined by

(@5 2, DW; §,M=@D.Y5 4,7)
where p,, is the (¢, £)-element of P.

Lemma 3. Let f be a transformation of a set I i.e. a map of I
into I. Let g be a map of I into a group G. Let S=M(G; 4,1; P).
For a pair (9, 1), a transformation ¢, ; of S is defined as follows:

(@5 2, @y, =(-(129); A, ).
Then ¢, ; s a right translation of S. Ewvery right translation is
determined by g and f in this manner.

Proof. Let ¢ be a right translation of S, [1], and let (x; 4, )¢
= ; A, 1). Since (x; 4, W)=(p3'; A, v)(@; 4, 1), applying ¢ to the
both sides, we have ’=2. Next we will prove that p’ is independent
of x and A; and «’ is independent of A.

Let

(@; A, Wo="; 4, 1),

(5 Agy o =(2"; 4y, p'").
Applying ¢ to

(@5 A1y =555 A, D@ Ay, 1),

we have

@5 A, ) =" Ay 1)
hence

xllel’ #/=#/I.

Thus we see that ¢ induces a transformation of I, ¢ — p’, denoted by
f and the map x—a’, is independent of 1. Let § denote the maps
x—a'. Applying ¢ to (; 4, )W 4, 1), we have (xp,.¥)J=2p,.(¥J)-
Let z=ap,,. Then (zy)j==z(yg) for all 2,y ¢ G. However, we know a
right translation of a group is inner, that is, there is an element a of
G such that xg=xae in which a depends on z. We denote it by a= ug.
The proof of the converse is routine.

Similarly we can prove:

Lemma 3’. For a pair of a transformation f of a set 4 and a
map g of 4 1into G, a left translation ¥, ; of S is given by

(@35 4y Vg, ;=g -2 29, p1).

Proof of Theorem 2.

(1)—(2). Since S is finite S has a kernel K which is finite simple,
hence completely simple. Let K=M(G; 4,1; P). Define a relation p
on K by

@; a,Poy; 7,0  iff a=7.
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It is easy to see that p is a left zero congruence on K. In order that
K be left zero indecomposable, 4 has to be trivial, |[4|=1. Now
K={(;1,p): 2e G, pel} and K is isomorphic to the direct product
G X1 of a group G and a right zero semigroup I under a map, (x; 1, z)
(&P, 1)

(2)—(8). Let K be the kernel of S and assume that K is a right
group. Let I be a minimal right ideal of S. Let aecl,be K. Then
abe K, and

K=abKCaSZI.
By minimality of I, we have I=K. This shows that a minimal right
ideal of S is unique.

8)—@1). Let K=M(G; 4,1;P) be the kernel of S. Suppose
|4]>1. Let 4,4, €4, A,#4,. Let (x; 4, ¢, (¥; 4, ) € K.  Recalling
that ideal extensions of K are given by translations of K and using
Lemma 3, we have

(x5 Ay, ﬂ1)S NW; Ay /,tz)szﬂ, A A,
This is a contradiction to the assumption because the two right ideals
would have to contain the unique minimal right ideal in their inter-
section. As shown in the proof of (1)—(2), K is a right group. Let I
be an arbitrary ideal of S. KCICS. 1[I is the ideal extension of K by
Z where Z is a semigroup with zero, that is, I/ K=Z. We will prove
here that I is left zero indecomposable. Let p be a left zero congruence
onI. Leta,b be arbitrary elements of I and ce K. Let e be a left
identity element of K. Then since p satisfies 2y p « for all z,y e,
we have
apacpeacpepebcpbcpbd.

Thus p is the universal relation i.e. IxI, that is, I is left zero inde-
composable.

Remark. The condition (1) is also equivalent to

(1) The kernel of S is left zero indecomposable.
If finiteness is not assumed, (1) is not equivalent to left amenability.
For example a free group on two generators is not amenable. (See
[2].) (1) cannot be replaced by the following :

(1) S is left zero indecomposable.

For example let S={a, b, ¢, d} be a semigroup defined by

xy=x for x=a or b and for all y e S.

cy=y forallye S

da=0b; db=a, de=d, d*=c.
S is left zero indecomposable but the kernel {a, b} is a left zero
semigroup.

Combining Theorem 2 with its dual case we have

Theorem 3. Let S be a finite semigroup. The following are
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equivalent :

(4) Ewvery ideal of S is rectangular band indecomposable.

(5) The kernel K of S is a group, |K|>1.

(6) S has a unique minimal right ideal and a unique minimal left
ideal.

We have proved that a finite left amenable semigroup S is the ideal
extension of a finite right group K by a finite semigroup W with zero.
Since K is weakly reductive, the method of Theorem 4.20 or Theorem
4.21 in [1] can be applied to the construction of S i.e. the ideal extension
of K by W. Though we will not describe the ideal extension here, we
would like to notice something about the translation semigroup and the
translational hull of K.

Let K=G xR, G a group, R a right zero semigroup. Let @ be the
semigroup of all ordered pairs ((g, f)) of g: R—G and f: R—G. The
operation in @ is defined by

(91, 1) - (92 S =(91% 1192 S1SD)
where
(a)(g,* f19) =(ag N f 9, (@) (f19)=(af)g,
@(fif)=(f)f, aeR.

By Lemma 3 we see that @ is isomorphic to the semigroup of all right
translations of K. The semigroup of all left translations , of K is
isomorphic to G:¥,—a,aeG. It can be proved that ¢, , is linked
with +, if and only if ¢ is a zero map, i.e. ag=a for all o ¢ R; there-
fore the translational hull 4 of K is isomorphic to the direct product
of G and the full transformation semigroup &, over the set R.

H=GXxFr={(a, N:aeG, feFgl
The inner part of 4 i.e. the subsemigroup of 4 which is identified
with K is isomorphic to G x R, R is the semigroup of all zero maps of
R into R.

Recently Melven Krom and Myren Krom have obtained in [4] a
necessary and sufficient condition for a semigroup to be left amenable
in terms of subsets of the semigroup. As its consequence they have
had

Theorem 4. A finite semigroup S is left amenable if and only if
there is a nonempty subset Q of S such that

N{eQ:aeS}=Q
Consequently the existence of such a Q is equivalent to one of (1), (2)
and (3) of Theorem 2.

Remark to Theorem 2. This paper has not been explicitly
concerned with the “left [right] amenability”’. In Theorem 2, however,
if we put the condition:

(0) S is left amenable.
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Then the implications (0)—(1) and (3)—(0) are easily obtained as
follows:

(0)—@A) If Sis left amenable, every right ideal of S, hence every
ideal of S, is left amenable. This is due to Frey [3] (See (3L/) in [2]).
Suppose an ideal I is homomorphic to a non-trivial left zero semigroup
L. L is also left amenable by (8C) in [2]. This is a contradiction
because a left zero semigroup is not left amenable by the remark after
(81) in [2]. Therefore I has to be left zero indecomposable.

(8)—(0). This is given by Rosen [5] (See (3I’) in [2]).

Problem. The algebraic structure of finite left amenable semi-
groups has been clarified. How is the algebraic theory related to the
left translation invariant mean m? Let S be an ideal extension of
GXR by W. If m,, m,, m, are means of G, R and W respectively, what
relationship is there between these means and a mean on S?
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