98. A Convergence Theorem in Measurable Function Spaces of Concave Type*)

By Shozo Koshi Mathematical Institute, Okayama University (Comm. by Kinjirô Kunugi, m. J. A., May 12, 1970)

1. L. Schwarz has shown that in $L^p(\Omega \cdot \mu)$ $(0 \le p < +\infty)$ for every C-sequence its sum is convergent [3]. In this note, we shall show that this fact is true in some type of measurable function spaces. Let L be a measurable function space (topological vector space) with a linear topology \mathcal{T} . A sequence $f_n \in L(n=1,2,\cdots)$ is called C-sequence in L if $\sum_{n=1}^{\infty} c_n f_n$ converges with respect to \mathcal{T} for all sequences of real numbers $\{c_n\}$ which tend to 0.

Now, we shall consider some class of function spaces which includes $L^p(0 \le p \le 1)$.

2. Let Ω be a measure space with measure μ where Ω is a union of mutually disjoint measurable set $A_{\lambda}(\lambda \in \Lambda)$ with finite measure and every measurable set of finite measure is contained in at most countable union from $A_{\lambda}(\lambda \in \Lambda)$. Let \mathcal{M} be the set of all measurable functions.

Let m be a functional on \mathcal{M} with the following conditions.

- (1) $0 \le m(f) \le +\infty$ for $f \in \mathcal{M}$.
- (2) $|f| \leq |g|$ a.e. $\Rightarrow m(f) \leq m(g)$.
- (3) m(f)=0 if and only if f=0 a.e.
- (4) $\inf(f,g) = 0$ i.e. $f \cap g = 0 \Rightarrow m(f+g) = m(f) + m(g)$.
- (5) $0 \le f_n \uparrow$, $\sup_n m(f_n) < + \infty \Rightarrow m(f) = \sup_n m(f_n)$ for $f = \sup_n f_n$.
- (6) $m(\alpha_n f) \rightarrow 0$ as $\alpha_n \rightarrow 0$ for every f with $m(f) < +\infty$.
- (7) $m(\alpha f) \ge \alpha m(f)$ for $1 \ge \alpha \ge 0$.
- (8) $m(\chi_{\scriptscriptstyle E}) < +\infty$ for every characteristic function $\chi_{\scriptscriptstyle E}$ of E with $\mu(E) < +\infty$.

We shall consider a subset of $\mathcal{M}\colon L_m=\{f\in\mathcal{M},\ m(f)<+\infty\}$. We shall identify f and g if f=g a.e. in L_m . If $m(f)=\int |f|^p d\mu (0< p\leq 1)$, then L_m coincides with L^p . If $\Omega=\bigcup_{i=1}^\infty A_i$ (disjoint union) $(0<\mu(A_i))$ $<+\infty$ for all $i=1,2,\cdots$) and $m(f)=\sum_{i=1}^\infty \frac{1}{2^i\mu(A_i)}\int_{A_i} \frac{|f|}{1+|f|}\,d\mu$, then

 L_m is the space of all measurable functions (essentially finite). In this case, (5) must be changed.

^{*)} Dedicated to Professor Hidegoro Nakano on his 60th birthday.

Abstract form of L_m is considered by Nakano [2].

- 3. Lemma 1. There exists a function $M(t, \omega)$ of two variables of real $t \ge 0$ and $\omega \in \Omega$ such that
- 1 $M(t, \omega)$ is a non-negative measurable function of ω for a fixed $t \ge 0$ with $M(0, \omega) = 0$,
- 2 $M(t, \omega)$ is a continuous function of $t \ge 0$ for a.e. $\omega \in \Omega$,
- 3 $M(\alpha, \omega) \ge M(\beta, \omega)$ for $\alpha \ge \beta \ge 0$ a.e. $\omega \in \Omega$,
- 4 $M(\alpha + \beta, \omega) \leq M(\alpha, \omega) + M(\beta, \omega)$ for a.e. $\omega \in \Omega(\alpha \geq 0, \beta \geq 0)$,
- 5 $m(f) = \int M(|f(\omega)|, \omega) d\mu$.

Since m is an additive functional of L_m , Lemma 1 is essentially proved in [1] by virtue of Radon-Nikodym's theorem and Conditions $(1) \sim (7)$.

Lemma 2. $m(f+g) \leq m(f) + m(g)$ for $f, g \in L_m$.

This lemma is a direct consequence of Lemma 1.

Lemma 3. L_m is a topological vector space with the topology by m (sequential topology).

This lemma follows from Lemma 2 and (6). Moreover the topology by m is complete by (5) and (6).

Remark. L_m is not locally convex in general. It may happen that the dual of L_m consists of only zero element.

Lemma 4. $\lim_{n\to\infty} m(f_n-f)=0$ implies that f_n converges to f in measure in every measurable set of finite measure.

Proof. For a measurable set E with finite measure and $\delta > 0$, there exist a positive number α and a measurable set A such that $\mu(A) < \delta$ and $\alpha \leq M(1,\omega) < +\infty$ for $\omega \in E-A$ by Lemma 1 and (8). Hence, for $1 > \varepsilon > 0$ and $g \in L_m$

$$\begin{split} \mu(\omega \in E, |g(\omega)| > \varepsilon) &\leq \alpha \int_{|g| > \varepsilon} M\left(\frac{|g(\omega)|}{\varepsilon}, \omega\right) d\mu + \delta \\ &\leq \alpha m\left(\frac{g}{\varepsilon}\right) + \delta \leq \frac{\alpha}{\varepsilon} m(g) + \delta. \end{split}$$

Hence, $m(f_n) \rightarrow 0$ implies $\mu(\omega \in E, |f_n(\omega)| > \varepsilon) \rightarrow 0$ for $\varepsilon > 0$. This proves Lemma 4.

Lemma 5. If $\{f_n\}$ is a C-sequence of L_m , then f_n converges to 0 a.e. on every measurable set of finite measure.

This lemma is proved by Lemma 4 and the result of Kolmogorov-Khintchin (cf. [3]).

Theorem. If $\{f_n\}$ is a C-sequence of L_m , then $\sum_{n=1}^{\infty} f_n$ is convergent.

Proof. Suppose that $m(f_n) \ge \delta > 0$ for all $f_n \in L_m(n=1,2,\cdots)$ and f_n converges to 0 a.e. on every measurable set of finite measure. For f_1 , we choose some measurable set F with $\mu(F) < +\infty$ such that

 $m(f_1\chi_F) \ge \frac{\delta}{2}$. We can find $\varepsilon > 0$ such that $m(f_1\chi_{E_0}) \le \frac{\delta}{4}$ for $\mu(E_0) < \varepsilon$,

 $E_0 \subset F$. Since f_n converges to 0 a.e. on F, there exists E with $\mu(E) < \varepsilon$ such that f_n converges uniformly on F - E (by Egoroff's theorem) and $m(f_1\chi_E) \leq \frac{\delta}{4}$. For $E_1 = F - E$, we have $m(f_1\chi_{E_1}) \geq \frac{\delta}{4}$.

Since $\{f_n\}$ converges uniformly on E_1 , we can find f_{n_2} such that $m(f_{n_2}\chi_{E_1}) \leq \frac{\delta}{4}$ by (6) and (8). By the same argument as above, there

exists E_2 with $\mu(E_2) < +\infty$ and $E_1 \cap E_2 = \phi$ such that $m(f_{n_2}\chi_{E_2}) \ge \frac{\delta}{4}$ and $\{f_n\}$ converges uniformly on E_2 .

Hence, by induction we can choose a sequence of numbers $1=n_1$ $< n_2 < \cdots$ and mutually disjoint measurable sets with finite measure E_1, E_2, \cdots such that

$$m(f_{n_k}\chi_{E_k}) \geq \frac{\delta}{4} (k=1,2,\cdots).$$

By (4) and (7), we have

$$m\left(\sum_{k=1}^{l} \frac{1}{k} f_{n_k}\right) \ge m\left(\sum_{k=1}^{l} \frac{1}{k} f_{n_k} \chi_{E_k}\right) \ge \sum_{k=1}^{l} \frac{1}{k} m(f_{n_k} \chi_{E_k})$$

$$\ge \frac{\delta}{4} \sum_{k=1}^{l} \frac{1}{k} \text{ for all } l=1,2,\cdots.$$

Hence, $\{f_{n_k}\}$ is not a C-sequence. This prove that $\lim_{n\to\infty} m(f_n) = 0$ for a C-sequence $\{f_n\}$ by Lemma 5. It is easy to see that if $\lim_{n\to\infty} m(f_n) = 0$, then $\sum_{n=1}^{\infty} f_n$ is convergent for a C-sequence $\{f_n\}$ (cf. [3]).

References

- S. Koshi: On additive functionals of measurable function spaces. Math. J. Okayama University, 13, 119-127 (1968).
- [2] H. Nakano: Concave modulars. J. Math. Soc. Japan, 5, 29-49 (1953).
- [3] L. Schwarz: Un théorème de convergence dans les L^p $0 \le p < +\infty$. C. R. Acad. Sc. Paris, **268**, 704-706 (1969).