No. 5]

97. Note on the Lexicographic Product of Ordered Semigroups

By Tôru SAITÔ Tokyo Gakugei University (Comm. by Kinjirô KUNUGI, M. J. A., May 12, 1970)

A semigroup S with a simple order \leq is called a *left* [right] ordered semigroup if it satisfies the condition that

for every $x, y, z \in S, x \leq y$ implies $zx \leq zy$ $[xz \leq yz]$. S is called an ordered semigroup if it is a left and right ordered semigroup. Let $\{S_{\alpha}; \alpha \in A\}$ be a collection of semigroups, each of which has a simple order and let the index set A be a well-ordered set. The direct product semigroup $\prod_{\alpha \in A} S_{\alpha}$ is called the *lexicographic product* of $\{S_{\alpha}; \alpha \in A\}$ if the simple order \leq in $\prod_{\alpha \in A} S_{\alpha}$ is defined by

 $(a_1, \dots a_{\alpha}, \dots) < (b_1, \dots, b_{\alpha}, \dots)$ if and only if there exists an element $\alpha \in A$ such that, for every $\gamma \in A$ with $\gamma < \alpha, a_{\gamma} = b_{\gamma}$ and moreover that $a_{\alpha} < b_{\alpha}$.

The purpose of this note is to give a condition in order that the lexicographic product of a well-ordered collection of ordered semigroups is an ordered semigroup.

A semigroup S is called left [right] condensed if, for every $s \in S$, sS [Ss] is a one-element set.

Lemma 1. Let S be a left condensed semigroup. Then there exist a partition of S into $\{T_{\lambda}; \lambda \in \Lambda\}$ and, for each $\lambda \in \Lambda$, an element $z_{\lambda} \in T_{\lambda}$ such that z_{λ} is a left zero of the semigroup S and that, for every $x_{\lambda} \in T_{\lambda}, x_{\lambda}S = z_{\lambda}$.

Proof. Let S be a left condensed semigroup. For $a, b \in S$, we define $a \sim b$ if and only if aS = bS. Then the relation \sim is an equivalence relation. Hence the set of equivalence classes $\{T_{\lambda} : \lambda \in A\}$ forms a partition of S. By definition, for each T_{λ} , there corresponds an element $z_{\lambda} \in S$ such that $x_{\lambda}S = z_{\lambda}$ for every $x_{\lambda} \in T_{\lambda}$. Hence

$$z_{\lambda}S = x_{\lambda}S^2 = z_{\lambda}$$

and so z_{λ} is a left zero of S and moreover $z_{\lambda} \in T_{\lambda}$.

Lemma 2. A semigroup S is left condensed and left cancellative if and only if S consists of one element.

Proof. Let S be a left condensed and left cancellative semigroup and let $x, y \in S$. Since S is left condensed, we have $x^2 = xy$ and then, since S is left cancellative, x=y. Hence S consists of one element. The converse part is trivial.

Lemma 3. A semigroup S is left condensed and right cancellative

if and only if S is a left zero semigroup.

Proof. Let S be a left condensed and right cancellative semigroup and let $x, y \in S$. Then $xyx = x^2$ and so xy = x. Hence S is a left zero semigroup. Conversely let S be a left zero semigroup. Then, for each $x \in S$, we have xS = x. Also if xz = yz, then x = xz = yz = y.

Lemma 4. A semigroup S is left condensed and right condensed if and only if S^2 consists of one element.

Proof. If S^2 consists of one element, then trivially S is left condensed and right condensed. Next suppose that S^2 contains at least two different elements, say xy and uv. Then we have either $xy \neq xv$ or $xv \neq uv$. If $xy \neq xv$, then S is not left condensed, and, if $xv \neq uv$, then S is not right condensed.

Theorem 5. Let $\{S_{\alpha}; \alpha \in A\}$ be a well-ordered collection of left ordered semigroups. Then the lexicographic product $\prod_{\alpha \in A} S_{\alpha}$ is a left ordered semigroup if and only if it satisfies either one of the following two conditions:

(1) For every $\alpha \in A$, S_{α} is left cancellative;

(2) There exists an element $\beta \in A$ such that, for every $\alpha \in A$ with $\alpha < \beta$, S_{α} is left cancellative and, for every $\alpha \in A$ with $\beta < \alpha$, S_{α} is left condensed.

Proof. We suppose that the lexicographic product $\prod_{\alpha \in A} S_{\alpha}$ is a left ordered semigroup. First we prove that, for every $\alpha, \gamma \in A$ with $\alpha < \gamma$, either S_{α} is left cancellative or S_{γ} is left condensed. By way of contradiction we assume that S_{α} is not left cancellative and S_{γ} is not left condensed. Then there exist $a_{\alpha}, b_{\alpha}, c_{\alpha} \in S_{\alpha}$ such that $a_{\alpha} < b_{\alpha}$ and $c_{\alpha}a_{\alpha} = c_{\alpha}b_{\alpha}$, and there exist $p_{\gamma}, q_{\gamma}, r_{\gamma} \in S_{\gamma}$ such that $r_{\gamma}q_{\gamma} < r_{\gamma}p_{\gamma}$. For each $\delta \in A$ such that $\delta \neq \alpha$ and $\delta \neq \gamma$, we take $x_{\delta} \in S_{\delta}$ arbitrarily. Then we have

and

$$(x_1, \dots, c_{\alpha}, \dots, r_{\gamma}, \dots)(x_1, \dots, a_{\alpha}, \dots, p_{\gamma}, \dots)$$

= $(x_1^2, \dots, c_{\alpha}a_{\alpha}, \dots, r_{\gamma}p_{\gamma}, \dots)$
> $(x_1^2, \dots, c_{\alpha}b_{\alpha}, \dots, r_{\gamma}q_{\gamma}, \dots)$
= $(x_1, \dots, c_{\alpha}, \dots, r_{\gamma}, \dots)(x_1, \dots, b_{\alpha}, \dots, q_{\gamma}, \dots),$

 $(x_1, \cdots, a_r, \cdots, p_r, \cdots) < (x_1, \cdots, b_r, \cdots, q_r, \cdots)$

which contradicts the assumption that $\prod_{\alpha \in A} S_{\alpha}$ is a left ordered semigroup. Now we suppose that there exists $\beta \in A$ such that S_{β} is neither left cancellative nor left condensed. Then, by the result just proved, for every $\alpha \in A$ such that $\alpha < \beta, S_{\alpha}$ is left cancellative and, for every $\alpha \in A$ such that $\beta < \alpha, S_{\alpha}$ is left condensed. Hence Condition (2) is satisfied. Next we suppose that, for every $\alpha \in A, S_{\alpha}$ is either left cancellative or left condensed. If, for every $\alpha \in A, S_{\alpha}$ is left cancellative, then Condition (1) is satisfied. Now we suppose that there exists $\gamma \in A$ such that S_{γ} is not left cancellative. We denote by β the least element of the set of elements $\gamma \in A$ such that S_r is not left cancellative. Then, for every $\alpha \in A$ such that $\alpha < \beta$, S_{α} is left cancellative. Moreover, for every $\alpha \in A$ such that $\beta < \alpha$, S_{α} is left condensed, since $\beta < \alpha$ and S_{β} is not left cancellative. Hence we have Condition (2).

Conversely we suppose that $\{S_{\alpha}; \alpha \in A\}$ satisfies either Condition (1) or Condition (2). We take

$$(\cdots, a_{\alpha}, \cdots), (\cdots, b_{\alpha}, \cdots), (\cdots, c_{\alpha}, \cdots) \in \prod_{\alpha \in A} S_{\alpha}$$

with

 $(\cdots, a_{\alpha}, \cdots) < (\cdots, b_{\alpha}, \cdots).$

Then there exists $\beta \in A$ such that $a_{\beta} < b_{\beta}$ and, for every $\alpha \in A$ with $\alpha < \beta$, $a_{\alpha} = b_{\alpha}$. First we suppose that Condition (1) is satisfied. Then S_{β} is left cancellative and so $c_{\beta}a_{\beta} < c_{\beta}b_{\beta}$. Moreover, for every $\alpha \in A$ with $\alpha < \beta$, $c_{\alpha}a_{\alpha} = c_{\alpha}b_{\alpha}$. Hence

$$(\cdots, c_{\alpha}, \cdots)(\cdots, a_{\alpha}, \cdots) = (\cdots, c_{\alpha}a_{\alpha}, \cdots) < (\cdots, c_{\alpha}b_{\alpha}, \cdots) = (\cdots, c_{\alpha}, \cdots)(\cdots, b_{\alpha}, \cdots).$$

Next we consider the case when Condition (2) is satisfied. Then there exists $\gamma \in A$ such that, for every $\alpha \in A$ with $\alpha < \gamma$, S_{α} is left cancellative and, for every $\alpha \in A$ with $\gamma < \alpha$, S_{α} is left condensed. If $\beta < \gamma$, then S_{β} is left cancellative and so, by the same way as above,

 $(\cdots, c_{\alpha}, \cdots)(\cdots, a_{\alpha}, \cdots) < (\cdots, c_{\alpha}, \cdots)(\cdots, b_{\alpha}, \cdots).$ If $\gamma \leq \beta$, then, for every $\alpha \in A$ with $\alpha < \beta$, $c_{\alpha}a_{\alpha} = c_{\alpha}b_{\alpha}$ since $a_{\alpha} = b_{\alpha}$. Also $c_{\beta}a_{\beta} \leq c_{\beta}b_{\beta}$ since S_{β} is a left ordered semigroup, and finally, for every $\alpha \in A$ with $\beta < \alpha$, $c_{\alpha}a_{\alpha} = c_{\alpha}b_{\alpha}$ since S_{α} is left condensed. Hence

 $(\cdots, c_{\alpha}, \cdots)(\cdots, a_{\alpha}, \cdots) \leq (\cdots, c_{\alpha}, \cdots)(\cdots, b_{\alpha}, \cdots).$

Hence in both cases $\prod_{\alpha \in A} S_{\alpha}$ is a left ordered semigroup.

Corollary 6. Let S_1 and S_2 be left ordered semigroups. Then the lexicographic product $S_1 \times S_2$ is a left ordered semigroup if and only if it satisfies either one of the following two conditions:

(1) S_1 is left cancellative;

(2) S_2 is left condensed.

Theorem 7. Let $\{S_{\alpha}; \alpha \in A\}$ be a well-ordered collection of ordered semigroups. Then the lexicographic product $\prod_{\alpha \in A} S_{\alpha}$ is an ordered semigroup if and only if $\{S_{\alpha}; \alpha \in A\}$ satisfies either one of the following conditions:

(1) For every $\alpha \in A$, S_{α} is cancellative;

(2) There exists an element $\beta \in A$ such that, for every $\alpha \in A$ with $\alpha < \beta, S_{\alpha}$ is cancellative, S_{β} is left cancellative, and, for every $\alpha \in A$ with $\beta < \alpha, S_{\alpha}$ is a right zero semigroup;

(3) There exists an element $\beta \in A$ such that, for every $\alpha \in A$ with $\alpha < \beta, S_{\alpha}$ is cancellative, S_{β} is right cancellative, and, for every $\alpha \in A$ with $\beta < \alpha, S_{\alpha}$ is a left zero semigroup;

(4) There exists an element $\beta \in A$ such that, for every $\alpha \in A$

with $\alpha < \beta$, S_{α} is cancellative, and, for every $\alpha \in A$ with $\beta < \alpha$, S_{α}^2 consists of one element;

(5) There exist elements $\beta_1, \beta_2 \in A$ with $\beta_1 < \beta_2$ such that, for every $\alpha \in A$ with $\alpha < \beta_1, S_{\alpha}$ is cancellative, S_{β_1} is left cancellative, for every $\alpha \in A$ with $\beta_1 < \alpha < \beta_2, S_{\alpha}$ is a right zero semigroup, S_{β_2} is right condensed, and, for every $\alpha \in A$ with $\beta_2 < \alpha, S_{\alpha}^2$ consists of one element;

(6) There exist elements $\beta_1, \beta_2 \in A$ with $\beta_1 < \beta_2$ such that, for every $\alpha \in A$ with $\alpha < \beta_1, S_{\alpha}$ is cancellative, S_{β_1} is right cancellative, for every $\alpha \in A$ with $\beta_1 < \alpha < \beta_2, S_{\alpha}$ is a left zero semigroup, S_{β_2} is left condensed and, for every $\alpha \in A$ with $\beta_2 < \alpha, S_{\alpha}^2$ consists of one element.

Proof. An immediate consequence of Theorem 5, Lemmas 3 and 4 and their duals.

Corollary 8. Let S_1 and S_2 be ordered semigroups. Then the lexicographic product $S_1 \times S_2$ is an ordered semigroup if and only if S_1 and S_2 satisfy either one of the following conditions:

- (1) S_1 is cancellative;
- (2) S_1 is left cancellative and S_2 is right condensed;
- (3) S_1 is right cancellative and S_2 is left condensed;
- (4) S_2^2 consists of one element.

Corollary 9. Let $\{S_{\alpha} : \alpha \in A\}$ be a well-ordered collection of the same ordered semigroup $S_{\alpha} = S$. Then the lexicographic product $\prod_{\alpha \in A} S_{\alpha}$ is an ordered semigroup if and only if it satisfies either one of the following conditions:

- (1) A consists of one element;
- (2) S is cancellative;
- (3) S is a left zero semigroup;
- (4) S is a right zero semigroup;
- (5) S^2 consists of one element.

References

- A. H. Clifford and G. B. Preston: The Algebraic Theory of Semigroups. I. Math. Surveys, No. 7, Amer. Math. Soc., Providence (1961).
- [2] L. Fuchs: Teilweise geordnete algebraische Strukturen. Studia Mathematica, Math. Lehrbücher Band, 19, Vandenhoeck and Ruprecht, Göttingen (1966).