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110. 1.Spaces over Locally Convex Spaces®

By Noboru YAMAMOTO
College of General Education, Osaka University

(Comm. by Kenjiro SHODA, M. J. A., June 12, 1970)

1. Inthe previous note [3], we defined the [*-space over a Banach
space and used it for a study of polynomial maps of Banach spaces.
It seems to be more useful to define a similar space for a locally convex
topological vector space. In this note we shall do this.

Let E be a locally convex (topological vector) space and S be its
(irreducible) spectrum of seminorms [2]. Then the n™ tensor power
E®" of E with the projective topology admits as its spectrum the
irreducible hull of the set of seminorms {p®"|pe S} where p® is a
seminorm defined by p®"(x)=inf {3 p(x{?)- - -p(xP) |2 =2 2{*D- - -Qz P}
for x ¢ E®*. For any p,1<p< o0, and for any p e S, we define a real

valued function [?p on the (algebraic) vector space éE®" by IPp(x)
n=1

=] (& )P)V? for =3, ,, &, € E®. Itisclearly a seminorm. Let
7S be the irreducible hull of seminorms {I*p|p € S}, we define a locally
convex space [’E to be the set {#=3z,|2, c E®" and [p(x)<oco for
any p e S} with the spectrum 7S, and I¢E to be its subspace of sym-
metric elements. Then the following properties are easily verified.

Proposition 1. If E is a Frechet space, so are I’E and I?E. If
E is Frechet and nuclear, then we have (PE)Y=I1'E’ and (I?E) =IE’
where E’ is the strong dual of E and 1/p+1/q=1.

As usual, we have [?E 4 if p<q, moreover we have

Theorem 1. For any p, ¢>1, I’PECIE and the inclusion is conti-
NUOUS.

Lemma. For any sequence {a,} of positive numbers with lim a¥™
=0 and for any real s=1, we have (3 a,)* <7 (2"a,)".

This Lemma is easily verified.

Proof of Theorem 1. For any peS; and x,c E®, we have
tp e Sy for any t>0 and (tp)®(x,)=t"p®"(x,), hence x=3" z, e [?E for
some p if and only if lim (p®"(x,))"=0. Thenzxe l“F for any q. This
means that [?E and [“F coincide with each other as sets. Let p=>q¢=1.
Let a, = (p®"(x,))? for an element x=>_ x, € [?’E and a seminorm p ¢ Sy,
then s=p/q=1, lima¥"=0 and p®*(x,)?=ai hence, by the above
Lemma, we have (I%(2,)? = p®" (@)Y= (X a,)’ = 25(2%a,)
=>(2p)°™(x,)P=(*(2p)(x))?. Let q be any seminorm in 19S5, then
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there is a seminorm p, e Sy with q=<1%, As is seen above we have
12, < 17(2p,), so that q<I?(2p,). This implies that the inclusion [?E
CI4E is continuous. g.e.d.

By the above Theorem we can identify any [?E with each other
for 1<p<oo. Hence we shall denote this space simply by IE if we
need not refer to p. The space [JE is defined similarly.

Next let E be a Banach space with the norm || || and Sz be the
spactrum consisting of seminorms p,=t¢| | for £>>0. Then it is clear
that the topology defined by S is the underlying locally convex topol-
ogy of the Banach space E. However we have

Proposition 2. The topology of I?E defined by 1°Sy is strictly
finer that the topology induced from the underlying locally convewx
topology of the Banach space IPE.

Proof. Since x=3"x, ¢ I?E if and only if (3 t"?||2®"|2)V?< oo for
any t>0, it is clear that [?EcCI?E and the inclusion is continuous.
Choose an element x,¢ E such that ||z,|=p,(x,)=1/2 and define a
sequence {z*'} in [?E by 2® =3 #® where 2® =0 if k+n and z{® = z®*.
Then ||2®||L?=(T||z®||2) =1/2%, hence ® converges to 0 in the topology
induced from I?E, but x® does not converge to 0 in the topology
defined by 7Sy because [7p,(x®) =G " ||x®|,)?)/?=1t* |2k >0 if £>2.

q.e.d.

2. Let f: E—F be a continuous linear map of locally convex
spaces, then we define a linear map If: [E—IF by If(x)=3 f®"(x,)
for =3 x,,x, ¢ E®". Itis easily seen that If(,E)<[,F. In contrast
with the case of [?-spaces over Banach spaces [3], we have

Proposition 3. The map lf : IE—IF is continuous for any conti-
nuous linear map f: E—F.

Proof. It suffices to prove that If:[?E—I?F is continuous for
some p=1. By definition, for any seminorm q e[S, there is a sem-
inorm q,e Sy such that q<l?q,, Since f is continuous, there is a
seminorm p € Sz such that g,0 f <9, so we have qolf <1#p. q.e.d.

The derivative of a map f: E—F of locally convex spaces is
defined to be the map df: E—L(E, F) such that for any seminorm
q € Sy there is a seminorm p e S; with liIil Gf@+v)— f(@)—df(x)())

/p(®)=0. The k™ derivative d*f: E—L(E¢",F) is defined inductively
by d*f=d(d*"'f) and f is of class C* if d*f is continuous.

Now, as in [3], we define a map e: E—IE by e(x)=> (1/n)x®"
for xe¢ E. Then easily we have

Theorem 2. The map e: E—I,E is of class C>.

More generally, let A be the set of non-increasing sequences a={a,}
of positive numbers such that lim a¥»=0, and for any a € A we define
amap ¢, : E—I,E by e(#)=3 a,2®" for ¢ E. Then we have also
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Theorem 2a. The map ¢,: E—I,E is of class C= for any a ¢ A.

A map f: E—F of locally convex spaces is said to be polynomial
(resp. a-polynomial, for a € A) if there is a continuous linear map ¢:
[,E—F such that f=qoe (resp. f=qoe,).

Let P,(E, F) be the vector space of a-polynomial maps from F to
F. Then it is easily seen that if a<b (i.e. if a,<b, for each n)
P, (E,F)CP,(E,F) and, as in [3], we have

Theorem 3. The map ¢*: L(,E, F)—P,E,F) defined by e¥(p)
=@og, for g € L(,E, F) is an (algebraic) isomorphism for any ac A.

Let E, F and G be three locally convex spaces, then it follows from
Proposition 3 that

Proposition 4. L(F, G)oP,(E,F)CP,E,G) and P,(F,G)-L(E,F)
CcP,(E,@) forany ac A.

A composition of two a-polynomial maps is not necessarily a-poly-
nomial, but we have

Proposition 5. For any two sequences a, be A, there is a
sequence ¢ € A such that P,(F, G)oP,(E,F)CP(E,G).

We shall call a map f: E—F an entire map if there is a sequence
ac A such that feP,(E,F) and let E(F,F) be the vector space of
entire maps from E to F, then Proposition 5 is restated as E(F, G)
oE(E,F)CEFE,G. If we define a topology on P,(¥,F) such that
¢*: L(,E, F)—P,(E, F) is a topological isomorphism (for some (fixed)
topology on L(l,E,F)). Then the inclusion map P,(E,F)CP,(E,F),
for a,b e A with a<b, is continuous. Thus we can define the inductive
limit topology on E(E, F) (cf [1]).
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